
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A274 904

DTIC
B U#%ELECTE

%JAN 25 1994 1

THESIS
AN OBJECT-ORIENTED LOGISTICS OVER THE SHORE
SIMULATION: AN AID IN THROUGHPUT ESTIMATION

by

Jack S. Noel II

September 1993

Thesis Advisor: William G. Kemple

Approved for public release; distribution is unlimited.

94-02060
,j•iHDHI'iiiillM iii ,,,94 1 24 067

REPORT DOCUMENTATION PAGE I poMHNp O7o4-ol
blic: reporting burden for this collktion of information is estimated to a\urage I hour par responsc. including the tame for nic'% s imnruetio. sarching existing data

gatheriag and maintaining the data neecde and completing aid r e•ming the colicction of information Send "vmmcnts regading this burden caunatc or an
-h aspect of this collection of information. including suggestions for reducing this burden, to A'ashingon headquarters Servaces, I)irctoraac for Information Op•ratins
Rerouts. 1215 Jefferson Davis tigh•sýa. Suite 1204. Arlmton. VA 222024302. and to the Office of Management and Budget. Papcr'uork Reduction Project

0704-0183) VaJtington I)• 20503

I.AGENCY USE ONLY fLeuve bhnk, 2. REPORT I)AT 3.RLPOR1 TYPI AND DATES COVERED

1993 September Master's Thesis

4.TITLE AND SUB ITILE AN OBJECT-ORIENT-ED LOCGISTICS OVER Ti-. SHORE 5.UNDING NUMBERS
SIMULATION AN AID IN THROUGHPUTF ESTIMATION

.A(J1fIIOR(S) Jack S. Noel 11

.PERFORMING ORGANIZAT)ION NAMIE S) ANT) ADDRFSSS [1) 8.PERFORMIN(ORGAN AIATION
aval Postgraduate School REPORT NUMBER
ontere% CA 93943-590)

* SPONSORINGJMONITORING AGENCY NAM] '. S) AND ADI)RESS(ES) O.SPONSORINGIMONIIORING
AGENCY RE.PORT NUMBER

11. SUPPLEMENI ARY NOTES The view s expressed in this thesis are those of the author and do not reflect the official polic. or position
f the Department of Defense or the U.S. Govenmnent

12a DIS'RIIIUT1ON/AVAILABIIITY STATEMENI 12b. DISTRItIITlION CODE
pproved for public release, distribution is unlimited.

13.ABSTRACT (ma imum 200 viords)
Ibis thesis documents the design. validation, and demonstration of a simulation model for the instream ofiload ofi ehicles from a Roll
On/Roll Off ship. The model is an object-oriented, discrete event simulation \witten in MODSIM Ii. The objective is to design and
demonstrate a model that can accurately estimate throughput times for the total offload of a vessel mstream using various mixcs of
lighterage With this tool. logistics Over The Shore (I,OTS) planners x'ill be better able to estimate thr'oughptit and possibly tailor their
mix of lighterage Io a given set of fixed parameters.

14ý SUBJECT "ERMS Object-Oriented. I O(IS. JIOTS. Logistics. Sinulation. MODSIM 15-NUMBER 01- PAGES
252

16 PRICE CODE1

17.SECURITY l8SECURITY 19.SECURIrY 20.LIMrIATION Of
CLASSIFICATION 01 CI,ASSIICATION O1 THIiS CLASSIFICA]ION OF ABSTRACT
REPORT PAGE ABSTRACT UL

Unclassified Unclassified Unclassified

NSN 7540-t01-280-5501o Standard Fonn 298 (Rev. 2-89)
Prescribed h% ANSI Std 239-18

Approved for public release; distribution is unlimited.

An Object-Oriented Logistics Over The Shore Simulation: An
Aid in Throughput Estimation

by

Jack S. Noel II
Lieutenant, United States Navy

B.S., United States Naval Academy, 1985

Submitted in partial fulfillment of the
Requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
September 1993

Author: __

ackS Noel II

Approved By: _ _ _ _ _ _ _ __,_
William G. kem e.s Advisor

Ke~i n econd R er --

Peter Purdue, Chairman
Department of Operations Analysis

ii

ABSTRACT

This thesis documents the design, validation, and

demonstration of a simulation model for the instream offload

of vehicles from a Roll On/Roll Off ship. The model is an

object-oriented, discrete event simulation written in MODSIM

II. The objective is to design and demonstrate a model that

can accurately estimate throughput times for the total of-

fload of a vessel instream using various mixes of lighter-

age. With this tool, Logistics Over The Shore (LOTS)

planners will be better able to estimate throughput and

possibly tailor their mix of lighterage to a given set of

fixed parameters.

'TCO QUALMIY fNSPECTED 5

£eession for

Faris CRA&t_

D71d 00

S6 r y I

-D ist

TABL3 OF CoUTIfrS

I. INTRODUCTION .. 1

A. THE IMPORTANCE OF LOTS 1

B. GENERAL DESCRIPTION OF A LOTS OPERATION 3

C. PROBLEM ... 4

D. PROPOSAL .. 5

II. THE LOGISTICS OVER THE SHORE OPERATION 7

A. OVERVIEW OF THE LOTS OPERATION 7

B. ROLL ON / ROLL OFF SHIP 11

C. LIGHTERAGE .. 12

1. LCU 1466, 1610, and 2000 Class 12

2. Logistics Support Vessel (LSV) 13

3. Causeway Ferry (CWF) 15

D. RO/RO DISCHARGE FACILITY (RRDF) 15

E. BEACH DISCHARGE FACILITIES 17

1. Bare Beach Operations 17

2. Floating Causeway Pier Operations 18

3. Elevated Causeway Pier Operations 18

iv

III. THE MODEL .. 20

A. BACKGROUND 20

B. ASSUMPTIONS 21

C. SHIPS .. 22

D. LIGHTERAGE CONTROL POINTS 25

E. BEACH AREAS 25

F. REFUEL AREA 26

G. LIGHTERS ... 27

1. Approach and Moor to Ship 28

2. Onload .. 28

3. Cast and Clear the Ship 28

4. Transit to the Beach Area Queue 29

5. Approach and Moor to Beach 29

6. Offload 30

7. Refueling 30

F. MODEL EXECUTION 32

1. Input .. 32

2. Object Building 32

3. Replication 33

4. Output 33

v

IV. ANALYTICAL PROCEDURES 34

A. BACKGROUND 34

B. LIGHTER CYCLE EVENT TIMES 35

C. ANALYSIS ... 38

1. Validation Scenario 39

2. Validation Analysis 40

3. Demonstration Scenarios 43

4. Demonstration Results 45

V. CONCLUSIONS .. 52

A. CONCLUSIONS 52

B. RECOMMENDATIONS 53

LIST OF REFERENCES .. 54

BIBLIOGRAPHY .. 56

APPENDIX A LIST OF ACRONYMS 58

APPENDIX B OBJECT-ORIENTED SIMULATION PICTURES 59

APPENDIX C RO/RO OFFLOAD MODEL SOURCE CODE 81

APPENDIX D SAMPLE INPUT FILES 227

APPENDIX E SAMPLE OUTPUT FILES 236

INITIAL DISTRIBUTION LIST 240

vi

ZZxCuTIVZ SWMaNY

Responding to the collapse of the Soviet Union, the U.S.

military is shifting its focus from global war and land

combat in Europe to regional contingencies in the third

world. This new role of the U.S. military will require more

flexibility and speed than has ever been required

previously.

Responding to the potential requirements to conduct

contingency operations in highly varied geophysical and me-

teorological conditions, the DOD has developed the Logis-

tics Over The Shore (LOTS) system as an alternative to the

modern port.

LOTS is an integrated system of equipment, personnel,

and procedures used to load and unload ships without the

benefit of fixed port facilities, in either friendly or un-

defended territory. It is designed to provide the

flexibility U.S. forces will need in the austere environ-

ments that they are likely to encounter. LOTS operations

may be conducted over unimproved shorelines, through fixed

vii

ports that are not accessible to deep draft shipping, and

through fixed ports that simply lack the facilities for ef-

ficient offload without LOTS capabilities. The most in-

volved form of LOTS, and the focus for this thesis, is the

offload of equipment and cargo over an unimproved shoreline,

or instream offload.

A basic problem facing military planners is that they

currently have no comprehensive means of estimating the

throughput capability of an operation for various mixes of

oceangoing ships, lighters, and material handling equipment.

The objective of this thesis was to build an Object-

Oriented computer simulation model in MODSIM II that esti-

mates the throughput capability of an instream vehicle dis-

charge operation from a RO/RO type vessel. The model used

to generate these planning factors serves as a computer-

based decision aid wherein the input can be modified to al-

low a planner to experiment with various combinations of

equipment and shipping configurations.

To ensure that the simulation model performed as re-

quired, a two phase process was used to first validate, and

viii

then demonstrate the model. The validation phase consisted

of running the model using a real world scenario for which

the empirical offload time was known, and then comparing the

two. After 300 replications, the mean offload time from the

model compares well with the empirical offload time for the

same scenario.

The second phase was to demonstrate the model. A four

point design space was devised where the variables were a

high and low mix of lighters at short and long distances

from the beach. As would expected be when comparing the

results of these four scenarios, the high mix of lighters

had a significantly shorter offload time than the low mix,

and the short distance scenarios had shorter offload times

than the long distance scenarios.

In summary, the model is valid for estimating RO/RO in-

stream offload times within the confines of the assumptions

made in the modeling process.

ix

1. INTRODUCTION

A. THE IOPORTANCEOF 0LOTS

Responding to the collapse of the Soviet Union, the U.S.

military is shifting its focus from global war and land

combat in Europe to regional contingencies in the third

world. Force sizes are being reduced and fewer units will

be forward deployed. The U.S. will depend heavily on airlift

and sealift to achieve rapid response. This new role of the

U.S. military will require more flexibility and speed than

has ever been required previously. For its part, the U.S.

Navy has shifted focus towards littoral warfare, and the

ability to project military power in the worlds coastal re-

gions is gaining in importance.

Military and commercial airlift have been relied upon

heavily in the past to achieve a rapid build up of forces

and will remain a key asset. Airlift alone has never been

able to transport more than a small fraction of the required

assets, however, and with fewer land-based, forward deployed

forces, the demand for airlift will be far too large for a

I

reasonable number of aircraft to accommodate. Thus, sea

lift will play an ever increasing part.

The use of strategic sealift in the rapid deployment,

sustainment and re-deployment of forces overseas is essen-

tial in the execution of any US Department of Defense (DOD)

contingency operation. Due to the expense of acquiring and

maintaining large fleets of lift assets, DOD has turned in-

creasingly to the commercial sector to provide lift. The

positive aspect of this is increased cost savings for all

concerned, provided there is no actual contingency. One

negative aspect is that commercial shipping has grown

dependent on fully cellularized containerships. The large

modern port facilities normally required to offload com-

mercial vessels limits the flexibility of our military

forces. In the regional contingencies that are likely to

challenge U.S. forces in the future, flexibility is

essential.

Responding to the potential requirements to conduct

contingency operations in highly varied geophysical and me-

teorological conditions, the DOD has developed the

2

Logistics Over The Shore (LOTS) system as an alternative to

the modern port.

B. GZENRAL DESCRIPTION OF A LOTS OPERATION

LOTS is an integrated system of equipment, personnel,

and procedures used to load and unload ships without the

benefit of fixed port facilities, in either friendly or un-

defended territory. It is designed to provide the

flexibility U.S. forces will need in the austere environ-

ments that they are likely to encounter. LOTS operations

may be conducted over unimproved shorelines, through fixed

ports that are not accessible to deep draft shipping, and

through fixed ports that simply lack the facilities for ef-

ficient offload without LOTS capabilities. The most in-

volved form of LOTS, and the focus for this thesis, is the

offload of equipment and cargo over an unimproved shoreline,

or instream offload.

The LOTS transfer operation can be broken down into

three areas; the offload of roll-on/roll-off (RO/RO) ships

through a RO/RO discharge facility (RRDF), the offload and

transfer of containers from either a self-sustaining or a

3

non-self-sustaining containership, and the transfer of fuel

from an Offshore Petroleum Discharge System (OPDS). The

first two operations are the major concern regarding

throughput. For the third operation, once the OPDS is in

place, the throughput is a known quantity and is easily

controlled.

C. PROBLEM

A basic problem facing military planners and LOTS op-

erational commanders is that they currently have no compre-

hensive means of estimating the throughput capability of an

operation for various mixes of oceangoing ships, lighters,

and material handling equipment. The joint tactical publi-

cation regarding LOTS [Ref. 11 provides a limited set of

planning factors that would be useful to planners provided

that their mix of equipment falls within the limited scope

of these factors.

Conversations with personnel at the JLOTS Test

Directorate [Ref. 2] and personnel in the Logistics Direc-

torate of the Joint Staff [Ref. 3] revealed that there is a

pressing need for a comprehensive set of planning factors as

4

well as some sort of tool (e.g., a computer simulation mod-

el) that can be used by planners in the future to update

these planning factors as required.

Several computer based simulation models of LOTS opera-

tions have been developed, and the JLOTS Test Directorate

has some of these models in hand, but each of these simu-

lations is written in a different language, with its own

software and hardware requirements. The JLOTS Test Direc-

torate has found them difficult to comprehend and impossible

to implement as an actual functioning tool.

D. PROPOSAL

The limited set of planning factors currently available

in Joint Pub 4-01.6 [Ref. 1] is inadequate for the needs of

JLOTS planners. The objective of this thesis is to build a

computer simulation model that estimates the throughput ca-

pability of an instream vehicle discharge operation from a

RO/RO type vessel through an RRDF under various scenarios.

The model used to generate these planning factors will

serve as a computer-based decision aid wherein the input can

be modified to allow a planner to experiment with various

5

combinations of equipment and shipping configurations. As

equipment configurations change, and the availability of

lighterages varies, the model can easily be modified to re-

flect these updates.

Validation of the model will be accomplished by

compairing model results with real world figures for a known

scenario. Further, we will use four scenarios to illustrate

the capability of the model. These scenarios reflect a

range of situations that a LOTS planner may face and will

serve as instruction as to how the model may be employed.

This thesis is organized as follows:

Chanter Title/Descrivtion

I. INTRODUCTION.

II. THE LOTS OPERATION. This chapter provides a
brief description of a LOTS operation
instream offload, a description of the
typical environment, and a description of
the equipment used in the operation.

III. THE MODEL. This chapter provides a complete
description of the simulation model
including assumptions and input and output data.

IV. ANALYTICAL PROCEDURES. This chapter
provides the origin for model event times and
a discussion of the results.

V. CONCLUSIONS. This chapter describes
conclusions and recommendations.

6

II. THE LOGISTICS OVESR THE SHORN OPERATION

A. OVERVIEW OF THE LOTS OPBRATION

Logistics over the shore involves loading and unloading

military or commercial ships in what would be considered

less than ideal circumstances. The operation could take

place instream or in port facilities that are either damaged

or in some other way lack the facilities typically required

to handle a modern ship. In the instream offload, the ships

are located anywhere from one to several miles offshore.

The cargo and vehicles are then loaded onto various types of

lighterage for further transfer over the beach to marshaling

areas. The vehicles and cargo then continue their journey

on land via the standard means. A LOTS system is composed

of the following basic components: (Ref. 1]

1. Seagoing cargo vessel

2. Off shore cargo discharge facility

3. Shallow draft lighterage

4. Shoreside discharge facility

7

The study of a LOTS operation can be subdivided into

four major areas; vehicle offload from a RO/RO type vessel,

container offload from either a self-sustaining or

non-self-sustaining container ship, break bulk offload, and

the bulk offload of liquids such as fuel and water. This

thesis is focused on the offload of vehicles from a RO/RO

type vessel, thus, the remainder of this chapter will be

limited to descriptions of this operation and the specific

equipment involved.

A typical RO/RO LOTS operation can best be illustrated

by describing what happens to the cargo as it moves from the

bowels of the seagoing vessel to the shoreside discharge

site. Figure 1 depicts the setup of some of the typical

LOTS components (Ref. 1]. On the beach side of the opera-

tion, discharge of cargo can be accomplished on a bare

beach, on an Elevated Causeway (ELCAS) or pier discharge

which could be either a floating causeway pier or the pier

in an unimproved port. Some of the different types of ves-

sels that can be oft-Loaded using the LOTS system are also

depicted in Figure 1. The Non-self-sustaining container

(NSSC) ship would be offloaded using a crane ship (T-ACS),

8

the Roll On/Roll Off ship has a RO/RO Discharge Facility

lashed alongside, and the Maritime Prepositioned Ship (MPS)

is being offloaded using Lift On/Lift Off or LO/LO tech-

niques as well as providing fuel and water to the beach.

L RRDF

o I E.AoLI>_-

EL)C

Figure 1: The LOTS Operation

9

The offload of a RO/RO can be accomplished in two ways.

The first method is LO/LO operations in which vehicles and

cargo are craned off, either by the ships organic crane or

by a T-ACS crane ship. The second method is to use a RO/RO

Discharge Facility (RRDF) and simply drive the vehicles onto

the lighters. The lighters wait in queues near the ship for

an open discharge station. When a discharge station becomes

available the Ship Lighterage Control Point (SLCP) directs a

lighter alongside. The cargo or rolling stock is then

loaded aboard and the lighter casts off from the discharge

point to transit to the shoreside queue. At the shoreside

queue the lighter is directed by the Beach Lighterage Con-

trol Point (BLCP) to the first available discharge point.

The cargo is then discharged and proceeds to the marshaling

area. The lighter then departs the discharge point and

control is transferred from the BLCP to the appropriate SLCP

which will tell the lighter where to pick up its next load.

Several components exist to perform each of the tasks listed

above. They can operate in many combinations to perform the

basic LOTS functions. A description of the components

10

available and how they integrate into the overall system

follows.

B. ROLL ON/ROLL OFF SHIP

There are many classes of Roll On/Roll Off ships, but

they can be divided into two basic types for this analysis:

self-sustaining and non-self-sustaining. The major differ-

ence is that a self-sustaining ship has its own ramp for

vehicle loading and discharge. In typical commercial

operations a self-sustaining RO/RO would moor and lower its

vehicle ramp directly onto the pier to commence the offload

of vehicles. A ramp provided from port facilities would be

married up to a non-self-sustaining ship. In the instream

offload, an RRDF is assembled and moored alongside the ship,

and in the case of the self-sustaining vessel, the ships

ramp is then lowered onto the RRDF platform. In the case of

a non-self-sustaining ship, a 120 foot offloading ramp is

added to the RRDF. [Ref.1]

The introduction of sea state and current can signifi-

cantly affect the throughput capability of an offload. For

an offload using an RRDF, operation is limited to sea state

11

two and no more than four knots of current. The discharge

of vehicles can continue using LO/LO operations if the sea

state exceeds the RRDF's parameters somewhat. But LO/LO

operations are also limited in more challenging sea states

depending on the equipment and the ability of the crew. In

any case LO/LO operations are limited to sea states no

higher than three. [Ref. 4]

C. LIGENZRAGZ

1. LCU 1466, 1610, and 2000 Class

The LCU is a conventional displacement vessel capa-

ble of transporting containers, breakbulk cargo, outsized

cargo, vehicles and personnel from the ship to the shoreside

discharge point. The 1466 and 1610 class are self-

sustaining once deployed to the theater in the sense that

they are fully equipped to support their crew once they are

delivered to the area of operations. The LCU 2000 class is

both self-deployable and self-sustaining. All three classes

are therefore capable of extended missions with endurance

based upon provisions and fuel capacity. All three LCU

classes are equipped with twin screws and a stern anchor, so

they can beach and retract under their own power. Cargo may

also be discharged from LCU's at a floating causeway pier or

12

an elevated causeway pier (ELCAS). For discharge at the

beach or to a floating causeway pier, rolling stock is

driven or towed off over the bow ramp of the LCU. If dis-

charge is accomplished at an ELCAS the cargo is craned off.

The characteristics of the three classes of LCU are listed

in Table 1. [Ref. 1]

TABLE 1. LCU CHARACTERISTICS

1466 CLASS 1610 CLASS 2000 CLASS

CARGO CAPACITY
PAYLOAD 187 ST 187 ST 188 ST

SPEED MAX 8.0 kts 12 kts 12 kts
FULL LOAD 6.5 kts 11 kts 10 kts

RANGE 1200 fin 1200 nm 4500 nm
@ 6 kts @ 6 kts @11.5 kts

FUEL
CAPACITY 3542 GALS 3290 GALS 92000 GALS
BURN RATE 34 GPH 36 GPH 41.6 GPH

DRAFT (LOADED)
FWD 3' 3' 2" 4'
AFT 4' 6' 5" 9'

2. Logistics Support Vessel (LSV)

The Logistics Support Vessel is a large conventional

displacement watercraft capable of transporting large

amounts of cargo to almost any port in the world. Much like

13

a large LCU, the LSV can carry loads such as 11 M1 tanks, 21

M2 Infantry Fighting Vehicles, or 48 20-foot containers.

The LSV's are both self-sustaining and self-deployable.

LSV's are capable of beaching and retracting under their own

power, thus, providing the most basic means of discharge.

Cargo can also be discharged using a floating causeway pier

or an ELCAS. As with an LCU, the rolling stock is driven or

towed off in the first two cases, and craned off in the

third. The characteristics of the LSV are listed in Table

2. [Ref. 5]

TABLE 2. LSV CEARACTERISTICS

CARGO CAPACITY
PAYLOAD 2000 ST

SPEED MAX 11.6 kts
FULL LOAD 10.0 kts

GE 6500 nm
@ ii kts

FUEL
CAPACITY 165,000 GALS
BURN RATE 146 GPH

RAFT (LOADED)
FM 6'
AT6'

14

3. Causeway Ferry (CUF)

A causeway ferry (CWF) is assembled from Navy stan-

dard 90 x 21 foot causeway sections. From one to three

causeway section's non-powered (CSNP) can be coupled with a

causeway section powered (CSP) to form a ferry. The CSP

contains two waterjet propulsion assemblies that are capable

of propelling the loaded ferry from the ship to the shore-

side discharge point. The CWF is capable of beaching and

retracting under its own power as well as discharging at an

ELCAS using a crane. The causeway ferry is capable of

operating a full 10 hour shift without refueling. The

causeway sections are easily loaded aboard several types of

ships, and they are the basis for several major LOTS compo-

nents such as the Floating Causeway Pier and the Side Load-

able Warping Tug in addition to the CWF. Figure 2 shows the

various configurations for a CWF. (Ref. 4]

D. RO/RO DISCHARGE FACILITY (RRDF)

The RRDF provides an interface between the sea going

vessels and the lighters for the offload of vehicles. The

RRDF itself is configured from six CSNP's in a three-wide by

15

two-long configuration to provide a platform for the offload

ramp, which may be either the ship's ramp for a self-

sustaining RO/RO, or part of the RRDF for a non-self-

sustaining RO/RO. Vehicles can be driven directly off of

the ships, onto the platform and onto either a causeway

ferry, an LCU, or an LSV. The RRDF is moored directly to

the ship and is helped maintaining its position by a Side

Loadable warping Tug. Assembly and mooring of the RRDF is

limited to sea state 0-1 for a non-self-sustaining vessel

and from 0-2 for a self-sustaining vessel. The RRDF can,

however, be operated safely through sea state 2 in either

case. [Ref. 11

; .IGNATION 2 *I3•'

CONFIGURATION CS.' FLt,• Csý - CSP -L•J.s 3

CS.. C:uNp CSN- O '.LENGTH jFT) 18- 27f 3ýý"

OVERALL WIDTH JFT) 21• 21 2"

CAPAC Th 5 IC 16
It VEWICLES)

Figure 2: Causeway Ferry Configurations

16

E. BEACH DISCHARGE FACILITIES

Several types of beach discharge methods may be employed

in LOTS operations. The use of one system over another

depends on the scenario at hand, the type of ship being

offloaded, the lighterage being employed, and most impor-

tantly, weather and surf conditions in the discharge area.

For the offload of a RO/RO type vessel, using causeway fer-

ries, LCU's, or LSV's, there are three basic beach discharge

methods: bare beach operations, causeway pier operations,

and elevated causeway pier operations. The factors that

influence the choice of each are listed below.

1. Bare Beach Operations

Throughput during bare beach operations are

primarily dependent on beach gradient and characteristics,

weather, wave height, and the beach consistency. The type

of cargo to be offloaded is also of concern since offloading

is done in the surf zone. The possibility of vehicles

stalling or being unable to gain traction is viable and must

be considered. In the typical offload of RO/RO type cargo

the vehicles would simply be driven or towed off of the

17

lighter onto the beach where they would then be directed to

a staging area. [Ref. 1]

2. Floating Causeway Pier Operations

A Floating Causeway Pier would normally be assembled

in the amphibious assault phase of an operation and remain

behind for the subsequent offload of the assault follow-on

echelon until the more permanent ELCAS could be installed.

Although RO/RO cargo is typically discharged directly to the

beach, the floating causeway pier provides a means for of-

floading a safe distance from the surf zone if it is re-

quired. A floating causeway pier is composed of 1 CSNP

(beach end configured), and 1 CSNP (sea end configured) with

the required number of CSNP's in between to meet the desired

depth at the sea end. Floating causeway piers are capable

of operating in wave height of 4 feet and a lateral wind

force of up to 40 knots with a 3 knot current.

3. Elevated Causeway Operations

The ELCAS allows containers, break bulk cargo and

vehicles to be discharged without contending with the surf

zone. ELCAS is a rapidly installable pier facility that can

be extended up to 3000 feet beyond the surf zone to provide

18

mooring for any type of military lighter or commercial

barge. The amount of roadway actually installed depends on

what is required to meet the 12 foot depth requirement at

the pierhead. The pierhead of the ELCAS is double width (72

feet) and equipped with two air-bearing turn-tables and two

180-ton cranes. The ELCAS would be installed with the ar-

rival of the first container ship. RO/RO cargo is normally

discharged on a bare beach, but can be discharged at the

ELCAS if the vehicles are within the weight limits of the

crane used on the ELCAS. Weight limits preclude the offload

of such vehicles as tanks and large, heavily loaded trucks.

This equipment and its characteristics discussed in the

preceding sections must be faithfully modeled in the simu-

lation to ensure that the output is reasonable and reliable.

The following chapter is a thorough description of the RO/RO

Offload model and how this was accomplished.

19

IZI. TSR MNDXL

A. BACKGROUND

We develop the RO/RO Offload simulation model to analyze

throughput for the RO/RO portion of an instream LOTS opera-

tion. The model was written in MODSIM II, an Object-

Oriented simulation language. M(DSIM II 'is a general-

purpose, modular, block-structured high-level programming

language which provides direct support for object-oriented

progranmning and discrete-event simulation., [Ref. 6:p. 1]

The prime elements of the RO/RO Offload model are created as

objects.

Objects in MODSIM are dynamically allocated data
structures coupled with routines, called methods. The
fields in the objects data structure define its state
at any instant in time while its methods describe the
actions which the object can perform. [Ref. 6:p. 103]

As an example, an LCU 2000 class lighter is modeled as a

lighter object, possessing the attributes that are unique to

that class such as cargo capacity, speed, fuel capacity, and

fuel burn rate. The fuel on board the individual lighter

decrements as time passes by a method within the lighter

object called EurznLrue. All of the objects within the

20

simulation interact to pass time in a realistic fashion so

that statistical data may be gathered for later analysis.

we model all of the components necessary to perform the

RO/RO portion of an instream LOTS operation. The objects

are generic enough so that any changes in the number and

type of ships, beaches, or lighterage, can be modified in

the model by simply changing the input files. The key ob-

jects in the RO/RO Offload model are described in the sec-

tions that follow. Figure 3 is a pictorial representation

of the objects in the model which correspond to the follow-

ing descriptions.

B. ASSUMEPTIONS

Several assumptions were required in order to define and

narrow the scope of the simulation model. The assumptions

are:

1. Weather is not a factor in the simulated offloads.
In real world operations LOTS is limited in practice
to sea states of two or below.

2. One ship is offloaded at a time.

3. All lighters are dedicated to the offload of one
ship.

4. There are no breakdowns in equipment.

21

5. Serials are prepared aboard the ship prior to the
arrival of the lighter. In other words, the
vehicles are standing by for onload when a lighter
arrives.

6. Lighters can perform operaterations simultaneously.
More than one lighter can onload at the same time,
several lighters may transit simultaneously,
and so on.

C. SHIPS

As discussed in Chapter II of this thesis, the oceango-

ing vessels that transport vehicles to the offload area in a

LOTS operation are RO/RO's. The object within the RO/RO

Offload model that represents these vessels is the RoRoOkbj.

The actual movement of the RO/RO to the Area of Operations

(AOR) is not modeled in the simulation because the question

to be answered is throughput in the offload phase, there-

fore, simulation starts with the ships on station. The

dominant effect the RO/RO has in this phase is the number of

spots the vessel has available for onload to a particular

type of lighter, and whether or not the RO/RO is self-

sustaining. Additionally, some classes of ships are parti-

tioned internally so that portions of the cargo can only be

handled by a specific spot, which limits the number and type

of lighters available to offload that cargo. These aspects

22

of a particular class of RO/RO can be modeled simply by

changing the input files for each vessel desired in a par-

ticular scenario.

The RozoobI possesses a method called MakeLoad which

actually constructs the serials based on the maximum

capacity of a given lighter. The number and type of spots

for a ship are input variables. For example, a RO/RO

configured with an RRDF and one organic crane has one LO/LO

spot, one CWF spot on the RRDF and one LCU spot on the RRDF.

The LO/LO spot is usually on the opposite side of the vessel

from the RRDF, and can accept both CWF's and LCU's. As an

example of a partitioned load, the aft portion of the Algol

(SL-7) class Vehicle Cargo Ships can only be offloaded by

LO/LO operations and can contain up to 60 vehicles. The

MakeLoad method keeps track of these 60 vehicles and ensures

that they decrement appropriately when onload of a lighter

is conducted at the LO/LO spot.

23

LCU Conducting
'kLoLo Ops

RoRoObj

.- • RRDF

Li-ghterO b

3+1 CWF D CSNP
LCcs

Awaiting LCU / LSV
~Ship]

Queue JJ

LCP ulC
Awaiting (WaitingFo?

Beach kFuel)

RefuelAreaObj

BeachObj

Figure 3: The Object-Oriented Approach to LOTS

24

D. LIGNTURAGN CONTROL POINTS

The Lighterage Control Points serve as the interface

between the queue in which the lighters wait for an avail-

able spot at a particular location, and that location. For

example, the Ship Lighterage Control Point (SLCP) interfaces

between the lighters waiting for a spot at the ship, and the

ship itself. There are three Lighterage Control Points

modeled in the RO/RO Offload model. In addition to the

SLCVPObJ, the ELCPObJ interfaces with the Beach objects, the

FuelCPObJ interfaces with the refueling area objects, and,

each interfaces with it's respective queue. Each of the

modules in which the Lighterage Control Point objects are

defined also has the definition for the associated queue

object, such as the AwaitingShIpQueueObj. The queue objects

actually hold the lighter objects until a spot opens up at

the associated location.

Z. BEACH AREAS

Typically the offload of rolling stock in the beach area

consists of starting the vehicles up and driving them away.

The one exception to this rule is when an ELCAS is in use

25

and vehicles are lifted from the lighters. The RO/RO Of-

fload model provides for three beach types: bare beach,

floating causeway pier, and ELCAS. Each instance of a Bea-

chobJ in the model, however, only varies in the number of

spots available for lighter offload. The spots are not

unique to a particular type of lighter, but if this attrib-

ute were desired it would entail only a minor modification

to the source code. The BeachObJ has within it a method

which keeps track of the time that the spots lay idle for

later analysis.

F. REFUEL AREA

The refueling area in a LOTS operation is typically a

shore site equipped to refuel the lighters. Each of the

lighters is normally capable of operating for a minimum of a

ten hour shift without refueling, but the time to transit to

the refueling area and to refuel can add a significant

amount of variance when looking at throughput.

The refueling area, modeled as a RefuelAreaObJ, has two

attributes which affect simulation time; the number of spots

available for refueling and the pump rate. Both of these

26

attributes can be modified in the input files. One other

factor affecting the refueling operation is the distance of

the refueling area with respect to both the ship and the

beach. These are also input parameters.

G. LIGHTERS

The LlghterObj is the key object in the RO/RO Offload

model in that it alone contains the methods which control

the passage of simulation time for each of the events mod-

eled. Each instance of a lighter object has its unique at-

tributes such as speed and cargo capacity that will come

into play when the time required for a given event to pass

is calculated.

The basic lighter cycle consists of eight events, each

of which is associated with a method in the LighterObj to

control the passage of simulation time. During each of

these events, as well as the time spent in the queues, the

lighter burns fuel. The eight events in the basic lighter

cycle are described below. A pictorial description using

object-oriented simulation pictures (OOS-Pics) (Ref. 7] can

be found in Appendix A.

27

1. Approach and Moor to Ship

At the beginning of simulation all lighters are in

standby in the AwltingShipgueue. When a ship has a free

spot, it asks the SLCPObj to remove a lighter requiring the

appropriate spot type from the queue. The SLCPbJ then

tells the lighter to Approach And Moor, thus initializing

the lighter cycle. The approach and moor time is calcu-

lated, the simulation time is allowed to pass, and fuel is

burned for that period of time.

2. Onload

After the lighter completes the approach and moor

event, it asks the ship to MakeLoad, which causes the Ro-

RoObJ to create a load and decrement the total onboard the

ship appropriately. The ship next tells the lighter to on-

load. The Lighterobj calculates the onload time, passes the

correct amount of simulation time, burns fuel, and tells

itself, the lighter, to cast off and clear the ship.

3. Cast and Clear the Ship

The cast and clear event is similar to the other two

described above in that the cast and clear time is calcu-

lated and allowed to pass, and fuel is burned. After the

28

lighter completes the cast and clear event it transits to

the beach area queue. The ship is next asked to clear the

spot just used. This frees it for use by another lighter and

starts that lighter's cycle.

4. Transit to the Beach Area Queue

As a lighter transits to the beach area it asks the

BLCPbJ to get a beach spot for offloading. The BLCPObJ in

turn asks each of the beach objects in the scenario if there

are any spots free. If there is a free spot, the lighter is

told to approach and moor to the appropriate BeachObj. If

there are no spots available the lighter is added to the

AwaltingBeachOQuue.

The 7TauaitTo method in the model calculates the

transit time based only on speed and distance. This is

different from the other events in the cycle where the event

times are drawn from random number streams.

5. Approach and Moor to the Beach

Approach and moor at the beach is identical to that

on the ship with the exception that the lighters spot re-

quirement is not checked, any lighter type can moor to any

beach type. If a spot becomes free at the beach and a

29

lighter does not happen to be in transit and requesting a

spot at that exact moment, the beach asks the BLCPbJ to

remove a lighter from the queue. The BLCPobJ then tells the

newly removed lighter to approach and moor.

6. Offload

Upon completion of the approach and moor event the

lighter is told to offload. Offload time is calculated,

simulation time is allowed to pass, and fuel is burned.

After completion of the offload, the fuel status of the

lighter is checked. If the lighter is at or below the spe-

cified minimum fuel percentage it is told to cast and clear

the beach and transit to the refueling area. If the fuel

status is above the minimum the lighter is told to cast and

clear the beach and transit to the ship area. These two

events are the last two of the eight in the basic lighter

cycle. They are essentially the same as the like named

events above, so a detailed description is not required.

7. Refueling

The basic sequence of events is modified slightly if

a lighter requires fuel. As mentioned above, after a

lighter completes its offload, a check is conducted to

30

determine if the lighter is at or below its minimum fuel

percentage. If the lighter is low on fuel it casts and

clears the beach and transits to the refueling area. On the

way to the refueling area the lighter checks in with the

FuelCPObj, which asks the RefuelAreaO@bj to check for empty

spots. If there is a spot available the lighter is told to

approach and moor. If not, the lighter is added to the

FuelAreaQueue and waits for a spot to open up. After a

lighter completes the approach and moor event it is told to

refuel. Refuel time is calculated based on the fuel re-

quired to fill the lighter to capacity and the pump rate of

the RefuelAreaobj. When refueling is complete, the lighter

is told to cast and clear and transit to the ship area. The

spot in the RefuelAreaObj is made free and the FuelCPObj is

asked to remove the next lighter from the queue.

After the lighter arrives back in the ship area

queue, the cycle starts anew with the lighter waiting for a

spot to become free on the ship. Each instance of a Ligh-

terObj conducts these events until the offload of every

RO/RO in the simulation is complete.

31

H. MODXL EXECUTION

There are four phases in the execution of the RO/RO Of-

fload simulation. A brief description of these phases and

the objects involved in their execution follows.

1. Input

The information required to create a desired

scenario is stored in eight ASCII files. These files are

easy to create and edit. The &laxaasezexbJ has the task of

creating the necessary objects to read these files and to

call the methods that actually read the data. The informa-

tion for each object to be built is stored in a record, and

then added to a QueueLiuawbj. Examples of program input

files can be found in Appendix D.

2. Object Building

The ObjectBuilderObj creates each instance of the

objects required for the scenario. It removes the records

from the QueueList objects mentioned above, and fires a

method in each object that fills that objects fields with

the information from the record. The end result of this

phase is that all of the objects required to run the desired

scenario are built and standing by for replication. All of

32

the lighter objects will have been added to the Awaiting-

Sh.lpueue and are standing by for the Zoao bJ to request the

first lighter to fill a vacant spot.

3. Replication

Replication is controlled by the replication manager

object or RepMagrObj. A method in this object asks the user

how many replications are desired and if seeds for the ran-

dom number generators are to be input by the user. At the

end of each replication the desired statistics are computed

and all of the lighters in the scenario are added to the

AwaitingShipQueue in preparation for the next replication.

4. Output

Output is created in the Statistics object or Stat-

&Obj. A method in this object is called after the last load

from the ship has been transferred to the beach, and all of

the lighters are returned to the AwaitlngShipQueue. This

method calculates the desired statistics and outputs them to

four ASCII files. Appendix E contains examples of program

output files.

33

IV. ANALYTICAL PR

A. RACKIGOURD

In order to ensure that the output from the simulation

model is reliable and correct, two steps must be accom-

plie ed. First, the model must be verified to ensure that

it is mathematically correct. This essentially involves the

checking and double checking of any equations, or input

distributions used to determine event times in the model.

The second step is validation of the model which, determines

if the output is realistic and if the output is in fact what

is required. In other words, does the simulation model

provide reliable output data of the desired parameters.

This two step process is the first phase in the analysis of

the RO/RO Offload model.

The second phase in the analysis is to demonstrate the

possible applications of the model. This is done by

selecting a set of scenarios, running them through the

model, and analyzing the output.

The following sections document the verification, val-

idation, and demonstration of the RO/RO Offload simulation

34

model subject to the constraining assumptions listed in

Chapter III.

B. LIGNT3R CYCLE NVT TIM8

In determining the times for each of the lighter cycle

events the primary objective is to obtain the most current

data available. Several sources were available that pro-

vided mean times and distributions for each of the events in

the lighter cycle, but no one set of data provided both the

accuracy and latitude that was required for the model. The

final set used in the model is a mixed set derived from all

of the sources available, coupled with some comnon sense

decisions, to provide the best event times for this simu-

lation model.

There are two capabilities in the RO/RO Offload model

that required some flexibility in determining the event time

distributions. The first is the capability to differentiate

between self-sustaining (SSR) and non-self-sustaining (NSSR)

RO/RO's. The second feature is that ships can be given the

capability of LO/LO operations. Two additional area's that

required flexibility are transit times, and refueling times.

35

Because the model allows the user to input the distances

between the ships, beaches, and refueling area's, the tran-

sit times between area's are calculated based solely on

speed and distance. This allows the user to place these

area's at any distance relative to each other. Refueling

times are also deterministic, based on the amount of fuel to

be pumped, and the pump rate. The following table lists the

times, distributions and source for each event.

TABLE 3. LIGHTER CYCLE EVEMT INPUT DATA
LIGHTER CAUSENRY FERRY LCU

CYCLE

EVENT PROD DIST MEAN/RNa STD PROD DIST IMAN/RNG aTD

APPROAC2 & MOOR SSR NORI.L 10.5 (3) 3.2 NORMAL 14.3 (3) 2.2

NSSR NORMAL 8 (2) 3.2 NOF39LL 14.3 (3) 2.2

OPERATIONAL DELAY 1 NORMAL 2 (1) 0.7 NORMAL 2 (1) 0.7

ONL4AD SRIP SSR NORMAL 16 (3) 3.9 NORI4AL 15.9 (3) 3.9

NSSR NORML 25 (2) 3.9 NORMAL 18 (2) 3.9

OPERATIONAL DELAY 2 LOGNORMAL 1.2 (1) 1.2 NORMAL 1 (1) 0.3

CAST & CLEAR SHIP 88R NORMAL 5 (3) 1.3 UNIFORM 2-2.5 (3) NA

NSSR NORMALL 4 (2) 1.3 UNIFORM 4-6.5 (2) NA

TRANSIT TO BEACH DETE]RINISTIC DETERMINISTIC

APPROACH & MOOR NORMAL 17 (1) 3.4 NORNAL 11 (1) 4.29

OPERATIONAL DELAY 3 LOGNORMAL 1 (1) 0.9 UNIFORM 1-3 (1) NA

OFFLAD AT BEACH NORMAL 10 (1) 3.4 NORMAL 3 (1) 0.8

OPERATIONAL DELAY 4 UNIFORM 0-1.5 (1) NA NORMAL 1 (1) 0.3

CAST & CLEAR BEACH NORMAL 9.9 (1) 1.8 UNIFORM 1.8-3 (1) NA

TRANSIT TO SHIP DETERMINISTIC DETERMINISTIC

NOTI~s a. All values are in minutes.
b. Onload and Offload times are in minutes per vehicle.

Moa•s (1) Ref. 8: p49. Net.. All STD'a and distributions come from this reference.
(2) Ref. 8: p34. 319"s Allow differentiation between SSR and NSSR ships.
(3) Ref. 9: p6-18 Not.. Most current data available for these events.

36

TABLE 4. LISHTIE CYCLE VWf INPUT DATA

LI•HTER CAUS•Y FERRY LCU
CYCLE

EVENT PROS DIST MEAN/RNG STD PROB DIST I MEAN/R1G STD

TRANSIT TO REFUEL AREA DETERMINISTIC DETERMINISTIC

APPROACH & 4OR MORMIL 17 (1) 3.4 NORMAL 11 (1) 4.29

OPERATIONAL DELAY 3 LOGNOU@OLL 1 (1) 0.9 UNIFORM 1-3 (1) NA

REFUEL DETERMINISTIC DETERMINISTIC

CAST & CLEAR REFUEL AREA NORW&L 9.9 (1) j 1.8 UNIFORM 1.8-3 (1) NA

TRANSIT TO SHIP DETERMINISTIC DETERMINISTIC

a a. All values are in minutes.
b. Refuel Area is located at a beach or shore site, therefore it is treated as a

beach for simulation event times.
8062C't (1) Ref. 8: p49. Motes All STD' and distributions came fran this reference.

Two additional notes on event times that are not re-

flected in the tables. The first is that an LSV is treated

as an LCU with regard to event times. Since an LSV moors to

the RRDF at the LCU spot, and is similar in most ways to an

LCU, this is not regarded as a risky assumption. This as-

sumption was further required because no data was available

for the LSV event times. The second thing to note is the

offload time at the LO/LO spot if the RO/RO being simulated

is so configured. The event time for a LO/LO offload is

normally distributed with a mean of 10.25 minutes per ve-

hicle and a standard deviation of 5.75 minutes per vehicle.

These values are a composite based on data obtained in CRM

37

91-3, [Ref. 10], and data from Joint Pub 4-01.6, [Ref. 1].

The standard deviation for the LO/LO offload time as well as

three other event times is actually too high for the normal

or lognormal distributions. In a simulation run, a small

percentage of the numbers drawn from the random number

streams in these cases would be negative. This would cause

a fatal error in the program, thus, these numbers are con-

verted to positives. As a result, the distributions

actually used in the model are truncated and slightly skewed

to the right of those described.

C. ANALYSIS

The analysis of model output is divided into two parts.

The stated goal of this thesis is to provide a valid simu-

lation model from which reliable estimates of throughput can

be derived for the instream offload of a RO/RO. The first

objective is to validate the simulation model, thus ensuring

that it does in fact provide reliable throughput estimates.

Step two is to demonstrate the use of the model using four

scenarios and evaluating the output.

38

1. Validation Scenario

Validation of the RO/RO Offload model was accom-

plished by taking a real world offload scenario for which

all of the parameters required by the model were known.

These parameters were loaded into the model via the input

files. The RO/RO Offload model was then run for 300 repli-

cations and the output was compared with the existing

empirical data. The operation selected for validation was

actually conducted during Ocean Venture '93. The following

tables list the input values for the model. For examples of

input files in the correct format, see Appendix D.

TABLE S. VALIDATION SCEIARIO INPUT DATA
SHIP DATA REFUEL AREA DATA

NAME BELLATRIX NAME FUEL DEPOT

TYPE SBR * OF SPOTS 2

DIST TO BCHi 6 nm DIST TO SHIP 6 rm

OF SPOTS 3 PM4P RATE 3500 OPH

SPOT TYPE LCU, CWF, LOLO

S VHCLS LOLO 60

VHCLS RRDF 0

VHCLS AMY SPOT 834

a a. # VHCLS LOLO indicates the number of vehicles in the

load that can be lifted from the LOLO spot only.
The Bellatrix, an SL-7 class, has a partitioned load
and 60 vehicles must be offloaded by LOLO.

b. Data provided by Joint Test Directorate [Ref. 11].

39

TABLE 6. VALIDATION SCUA• M O INPUT DATA
LIGHTER DATA

LIGHTER ID ALFA - ECHO FOXTROT - GOLF HOTEL INDIA - LIMA

TYPE LCU 2000 LCU 1610 L8V 3 X 1 CUF

SIN SCENRIO 5 2 1 4

SPOT RWEI RED LCU LCU LCU CWF

W" SPEED 12 kta 12 kti 11.6 kta 6 kta

FU LAD SPEED 11 kto 11 kte 10 kts 3 kta

VHCLE CAPACITY 11 4 25 16

FUEL CAPACITY 92000.0 GAL 3290.0 GAL 165000.0 GACL 275.0 GAL

FUEL BURN RATE 41.6 OPH 36.0 OPH 145.8 GPH 20.8 GPH

MIN FUEL W 0.25 0.25 0.25 0.25

ýTU8, a. Fuel capacities, Burn rates, and vehicle capacities for the
LCU 2000, LSV, and 3 x 1 CWF provided by Joint Test
Directorate [Ref. 11].

TABLE 7. VALIDATION SCMARIO INPUT DATA
BEACH DATA

NAME SOUTH ARMY NAVY AIMIN

TYPE BARE BEACH CAUSEWAY PIER CAUSEIWY PIER CAUSEIGY PIER

#OF SPOTS 2 2 1 1

DIST TO SHIP 6 rzn 6 nm 6 nm 6 run

DIST TO FUEL 6 nm 6 nm 6 rm 6 nm

R1TZIs a. Data provided by Joint Teat Directorate [Ref. 11].

2. Validation Analysis

The approach employed in this thesis for model val-

idation is the basic inspection approach [Ref. 12: p. 316].

This procedure involves the comparison of one or more sta-

tistics from the model with those from real world

40

observations. For this model the total offload time for the

ship in the given scenario will serve as the statistic for

comparison. Although the RO/RO Offload model collects data

for the idle time at each of the ship and beach spots in the

scenario, as well as the time spent in the AwaltIemngipoueue

and AwaitingBeachQueue, there currently is no empirical data

with which to compare it.

The RO/RO Offload model is a terminating simulation

(Ref. 12:p. 529]. That is to say that each replication of

the simulation runs until a terminating event occurs, name-

ly, the complete offload of the ship in the given scenario.

Since different runs use an independent sequence of random

numbers for the individual event times, this implies that

the output realizations from the different runs are

independent as well. Specifically, total offload time for

the ship in our scenario. Calculating the mean X= E(A),

where X is the independent total offload time for a single

simulation replication, serves as a reliable point estimate

for the comparison. If X1, X2, ... ,X, are the independent,

realizations for offload times of n replications, then the

mean is simply: X= (E,= AX,)/

41

As noted previously, the validation run of the model

consisted of 300 replications. The output is in ASCII for-

mat, examples of which can be found in Appendix E. The

output was loaded into SPSS [Ref. 13], and some basic

graphical analysis was conducted. Output times from the

model are expressed in minutes, and the real world observa-

tions are generally expressed in hours or days, therefore,

some simple conversion is required. The results for the

validation are presented below in Figure 4.

JLOTS III
Bkx Offed Sceao
12 Liiterm 6nm frm Beach5D

0 Stdý Dev =40722
Mean = 47032
N = 30.00

~ ~ 0

Offload Ti•me in Mnes

Figure 4: Histogram of Bellatrix Offload Scenario
Compared to Normal Distribution.

We expect our offload time data to be slightly

skewed to the right since offload time is bounded by zero on

42

the left. This is confirmed by Figure 4. Nevertheless, we

rely on the central limit theorem and the robustness of

procedures based on the t-distribution to build a 99%

confidence interval for the mean offload time using the 300

simulated observations.

X ±z,2s/W) = 4703.2 ± 2.576(407.22/,f'3-6) = [4642.63,4763.761

This interval expressed in hours is [77.37, 79.39].

The empirical mean, 79.2, clearly falls within this confi-

dence interval which lends credence to our claim that the

RoRo Offload simulation model provides reliable estimates

for throughput.

3. Demonstration Scenarios

In order to fully exercise the simulation model, a

design space consisting of four scenarios was selected.

There are many factors which could be varied to determine

the effect on total offload time, but the two most obvious

variables are the number of lighters, and the distance of

the ship from the beach. The objective is to stress the

model, thus, the values for these variables could be

considered extreme cases that are not likely to be

43

replicated in the real world. The four scenarios are, a

large number of lighters at both long and short distances,

and a small number of lighters at both long and short dis-

tances. In choosing the number of lighters, some

experimental runs were conducted to ensure that the queues

in the model were behaving as desired. Aside from the num-

ber of lighters, and the distance between ship and beach,

all other variables were held constant. The data used in

the validation scenario listed in tables 5, 6, and 7 were

used with the exception of distances, and lighters. The

number of beaches was reduced to two, the south beach and

the admin pier. The number of beaches was reduced to help

obtain the desired behavior in the queues. Figure 5 depicts

the design space for the demonstration.

16

900 Reps 900 Reps

S

Ir

900 Reps 900 Reps
z

Inm 6nm
DSTANCE

Figure 5: Demonstration Design Space

44

4. Demonstration Results

Graphical techniques were employed to analyze the

data from the four demonstration scenarios. The model was

run for n = 900 replications for each case. Figure 6 de-

picts the results from the four runs.

Bdlatix Offload
Four Demns-Abon Scenanos

T 160
i

m 140
e

120I

1200 -Mean = 10513.2n 1 0000-

1-M 800E- Mean = 7606#i

n 600E -

t 400E - / / Mean =4330.9
e Mean = 3791.1
S 200Q I

16-6 16-1 5-6 5-1

Number of Ughters - Distance from Ship to Beach(rim)

Figure 6: Boxplots of Results from Demonstration Scenarios

Each of the four boxplots above depicts the results

from one of the four scenarios. The first observation to be

made is that the two 16 lighter scenarios are relatively

close in their final values. In fact, there is only

approximately 9 hours difference between these two mean of-

fload times. This difference is likely due to the

45

difference in distance between the two scenarios. we let X,

and X2 be the observed offload times for a replication of

the 16-6 and 16-1 scenarios respectively, and then ran a

paired t-test to compare the two scenarios where:

Ho :-.. 1 -X,. 2 = D, = 0, and

where D= E,"=, Dn and SD is the standard deviation of the dif-

ferences of paired observations. The results of the paired

t-test follow:

TABLE 8. PAIRED T-TZST FOR
16-6 AND 16-1 SCEWARIOS

Man 4,330.86 3,791.11I

Standard Deviation 429.91 503.49

SE of Mean 14.33 16.78
INumber of Pairs 900

Correlat ion 0.02

2-tail Significance 0.54

Standard Deviation 655.32
S of Mean 21.84

i99t Confidence (483. 351 596. 141)

46

A two-tail significance of zero for the paired dif-

ferences indicates that the probability of observing a dif-

ference this large or larger when the two means are the same

is essentially zero. Additionally, zero does not fall

within the 99% confidence interval for the mean of the

paired differences. The conclusion is that Homust be re-

jected and the difference between the two means is statis-

tically significant. Although the difference is

statistically significant, it would be deemed operationally

insignificant in the course of an entire operation. This

difference is relatively small due to the buffering effect

of the queues. The times spent in queue by lighter type and

the idle spot times are listed below.

TABLE 9. MEAN TIME SPENT IN QUEUE BY LIGHTER TYPE

Awaiting Ship Queue Data Awaiting Beach Queue Data
Scenario LCU Ship LSV Ship CWF Ship LCU Beach LSV Beach CWF Beach

16-6 1,066.5 691.9 725.3 144.3 69.5 39.5

16-1 1,198.3 761.3 840.4 418.9 187.7 166.6

5-6 584.9 0 0 0.4 0 0

5-1 1,047.7 0 0 3.6 0 1.2

MOTMJs a. All times in minutes

47

TABLE 10. MEAN TIM SNIP AND BRACH SPOTS WZRE DDLE
Ship Idle Spot Time Beach Idle Spot Time

Scenario LCU Spot CMF spot LoLo Spot South Beach Admin Pier

16-6 1,788.8 1,508.4 1,733.4 1,643.33 2,092.1

16-1 1,615.9 1,210.2 1,646.1 1,198.6 1,518.8

5-6 2,764.7 6,239.7 2,883.4 6,051.6 6,950.6

5-1 1,724.6 3,679.2 1,782.2 4,074.1 5,207.4

ýM= - a. All times in minutes

While the interpretation of the total offload time

is straightforward, care must be taken when interpreting

these times. First, note that the mean time spent in queue

is bounded by the total offload time, and should be normal-

ized to the percent of the total offload time spent in

queue. Second, note that the idle times have some non-zero

lower bound that is determined by the number of loads car-

ried by each lighter type.

With so many lighters in the 16 lighter scenarios,

the queues rarely are without the desired lighter type for a

newly available spot, thus, these offload cycles have a

minimum idle time at both the ship and at the beach. Like-

wise, the time spent in queue is relatively high because of

the large number of lighters. When the distance is de-

creased from six to one mile, the time spent in queue

48

increases and the idle spot times decrease, as would be

expected.

In contrast, the two scenarios with five lighters

each had little or no buffering from the queues, thus, the

idle spot times increase significantly. The mix of lighters

must be explained to understand fully what is happening in

these scenarios. The lighter mix for the five lighter sce-

narios consists of four LCU's, and one CWF. Since there is

no LSV in the scenario, LSV queue times are zero. Because

there is only one CWF in the scenario, the time spent in

queue for the CWF is zero, and it's associated idle spot

time is high. The CWF is essentially running back and forth

directly between ship and beach. For the LCU's, they are

spending more time in the queues because there are more of

them in the mix and they are competing for the same spots.

This undoubtedly forces some into the queue. The queue

times are significantly lower than in the 16 lighter

scenarios, and the idle times are also higher, as would be

expected. Again, as the distance decreases, the queue times

increase and the idle times decrease.

49

What can be concluded about the five lighter

scenarios is that scarcity of resources is driving up the

total offload time. The increase in distance form one to

six miles makes the lighter resources even more scarce,

thus, a higher offload time.

It must be noted that without empirical data to

compare with, it is difficult to say what the queue times

and the idle times should be. There is a significant amount

of variance that results from a mix of lighters with

different load capacities. What has been found in empirical

observations is that using a mix of lighters with similar

capacities smoothes the process. The model results support

this finding. In the five lighter scenario we used four

LCU's. If an LSV with a 25 vehicle capacity is substituted

for on LCU in the five lighter mix, the awaiting ship queue

time can be driven up even further. With fewer lighters in

a scenario the effect is more pronounced.

What has been demonstrated here is that the RO/RO

Offload model can be useful in determining throughput time

for a given scenario. In real world operations the majority

of variables will be fixed. The decision maker will have a

50

smaller set of variables that can be adjusted to improve the

performance in an offload. For example, the distance of the

ship from the beach is probably a function of anchorage

locations, thus limiting the options. For a given distance

and ship type, the LOTS planner can use the RO/RO Offload

simulation model to help find a better mix of lighters to

work within the fixed parameters.

51

V. COECLUSIONS

A. CONCLUSIONS

The purpose of this thesis was to provide a valid model

with which reliable estimates of RO/RO throughput could be

obtained. The RO/RO offload model is valid for this purpose

within the scope of the limiting assumptions. The model can

be used effectively not only to estimate throughput, but to

possibly improve throughput rates by providing LOTS planners

the opportunity to model an offload and adjust the variables

long before the real world equipment is on station.

The four demonstration scenarios serve purely as an il-

lustration of how the model may be used. Planners are cer-

tainly not limited to altering only these variables. In

theory, the model could have been run hundreds of times,

evaluating every possible combination of variables. The run

time for the model is so short, however, that it may be used

on demand to provide planning factors tailored to a specific

scenario.

52

B.* RUC~m&~TIONS

The RO/RO Offload model also has the ability to collect

data on the mean time spent in each of the queues by lighter

type as well as the idle time for ship and beach spots. It

is hoped that by collecting and analyzing this data that

some insight could be gained as to how best to alter the

number and mix of lighters for a scenario. Empirical data

was not available to validate these features, however, they

were demonstrated in this thesis. We recommend that in fu-

ture operations, data be collected so that the model can be

further validated.

Regarding future work, there are several features that

could be added to either add fidelity to the model or make

it more user friendly. They are:

1. Add graphics to the model.

2. Modify the model to allow the offload of container
ships. The modular structure of object-oriented
programming lends itself to these seemingly broad
modifications. The objects in the RO/RO Offload
model are generic enough to make this a relatively
simple task.

3. Incorporate weather and sea state into the model.

4. Incorporate equipment failures into the model.

53

LIS8T OFR

1. Joint Publication 4-01.6, The Joint Staff, Joint
Tactics, Techniques, and Procedures for Joint
Logistics Over The Shore, August 1991.

2. Telephone conversation between Captain Steve Christy,
JLOTS III Test Directorate, and the author, 17 May 1993.

3. Telephone conversation between LtCol David Miller,
J-4 Mobility, The Joint Staff, and the author, 18 May
1993.

4. JLOTS II Test Directorate, JLOTS II Throughput Test,
Naval Amphibious Base, Little Creek, Norfolk, VA,
1985.

5. Department of the Army, LOGEX 88 Joint Logistics
Over The Shore (JLOTS) Exercise Executive Summnary,
U.S. Army Transportation Center, Fort Eustis, VA,
1989.

6. CACI Products Company, RODSIM II The Language for
Object-Oriented Progranming, Reference Manual, La Jolla,
CA, January 1992.

7. Bailey, Michael, "Object-Oriented Simulation Pictures
(OOS-PIC) For Designing and Testing," Naval Postgraduate
School, Monterey, CA, 1 February 1993.

8. JLOTS II Test Directorate, JLOTS II Roll On/Roll Off
Ship Operations, Naval Amphibious Base, Little Creek,
Norfolk, VA, 19 March 1984.

9. JLOTS III Te Directorate, JLOTS III Display
Determination 91 Test Report, Naval Amphibious Base,
Little Creek, Norfolk, VA, 18 November 1992.

54

10. Center For Naval Analysis, Theoretical Distributions
of Maritime Prepositioned Force Barge Cycle Component
Times, CRM 91-3, by William A. D. Wallace, February
1991.

11. Telephone conversation between Captain Steve Christy,
JLOTS III Test Directorate, and the author, 17 August
1993.

12. Law, A. M., and Kelton, W. D., Simulation Modeling and
Analysis, 2d ed., McGraw-Hill, 1991.

13. Norusis, M. J., SPSS For Windows Base System Users
Guide, Release 5.0, SPSS, Chicago, IL, 1992.

55

BIDLIOGRAPIT

Bailey, Michael, 8RecIOHandleObj: Object Input Made Easy,"
Naval Postgraduate School, Monterey, CA, 1 February
1993.

Center For Naval Analysis, CRM 89-339, MPF Rxercise Summary,
by John F. Nance and William A. D. Wallace,
February 1990.

Center For Naval Analysis, CRM 91-101, The Maritime
Prepositioned Force Offload Model, Vol. I, by C. A.
Cowie, R. W. Reichard and W. A. D. Wallace,
April 1991.

David Taylor Research Center, Evaluation of JLOTS Lessons
Learned in Solid Shield 89, by The Mobile Support
Systems Office (Code 1250), September 1989.

JLOTS III Test Directorate, JLOTS III Display
Determination 91 Test Report, Naval Amphibious Base,
Little Creek, Norfolk, VA, 18 November 1992.

JLOTS II Test Directorate, JLOTS II Throughput Test,
Naval Amphibious Base, Little Creek, Norfolk, VA,
1985.

Law, A. M., and Kelton, W. D., Simulation Modeling and
Analysis, 2d ed., McGraw-Hill, 1991.

Mendenhall, W., Wackerly, D. D., and Scheaffer, R. L.,
Mathematical Statistics with Applications, 4th ed.,
PWS-KENT, 1990.

Naval Civil Engineering Laboratory, Report 1717,
Productivity Analysis of Powered Causeway Sections for
ContainerShip Offloading, by R. E. Bergman, December
1984.

56

Shaw, S. R., An Object-Oriented Ship-To-Shore Movement
Analysis Model (CUTrER), Master's Thesis, Naval
Postgraduate School, Monterey, CA, September 1992.

Speight, J. A., A Management Decision Model For Logistics
Over The Shore (LOTS) Operations Using Conditional
Stochastic Network Techniques, Master's Thesis,
Massachusetts Institute of Technology, Cambridge, MA,
January 1988.

Sumner, J. D., An Analysis of the Maritime Prepositioning
Ship ("S) Instream Offload: A Decision Framework
for the Marine Corps Commander, Master's Thesis, Naval
Postgraduate School, Monterey, CA, December 1991.

Zalewski, A. J., A Ship-To-Shore Simulation, Master's
Thesis, Naval Postgraduate School, Monterey, CA,
September 1991.

57

APPEMDIX A LIST OF ACRONYMS

BLCP Beach Lighterage Control Point

CSNP Causeway Section Non-Powered

CSP Causeway Section Powered

CWF Causeway Ferry

DOD Department of Defense

ELCAS Elevated Causeway Pier

GPH Gallons per Hour

JLOTS Joint Logistics Over The Shore

LO/LO Lift On/Lift Off

LOTS Logistics Over The Shore

LCU Type of Lighter, LCU 1466, LCU 1610, LCU 2000

LSV Logistics Support Vessel

NSSR Non-Self-Sustaining RO/RO

OPDS Offshore Petroleum Discharge System

RO/RO Roll On/Roll Off

RRDF Roll On/Roll Off Discharge Facility

SLCP Ship Lighterage Control Point

SSR Self-Sustaining RO/RO

T-ACS Crane Ship

58

APPENDIX B OBJECT-ORIENTED SIMULATION PICTURES

The following pages document the Transition action dia-

grams for the RO/RO Offload model. Transition action

diagrams are a combination of old style flow charts, coupled

with Object-Oriented simulation pictures, or OOS-Pics. To-

gether they show the flow of control in the Lighter Cycle

operation of the RO/RO Offload model, including the

interactions between objects, and their methods and fields.

59

RoRoObj
Fill All Spots on [

RoRo(s)
ShipSpot

StartTheShow

A S K S L C P F o r _ _ _ _ _ _ _

Lighterte

A rPage 13 iGetLighter

•1 • LighterObj

Lighter in No-- approaching will go
Queue directly to ship

Step 1GetSpot
L______JYes

Remove Lighter Awa itingShipQueue I
From Queue 0ueueObj

S~RemoveThis()

Next Page

Figure 7: OOS-Pics Page 1.

60

Prey
Page Lo ieOto LighterObj

Queue Time In
_______ JShipQueue

LogQueueTime

TELL Lighter to 1LighterObj
ApproachAndMoorI

(Ship) ________________

ApproachArid

Moor

Random~bj
Get

ApproachAndrvMoor ApproachAnd
Time MoorTime

Normal
(mean,std)

Get Random~bj
Operation a lDe lay

Time

Normal
(mean,std)

Next Page

Figure 8: QoS-Pics Page 2.

61

Prey.

Page WAIT LighterObj

N /I OperationalDelay Time
Time OperationalDelay

- Time

ApproachAnd
Moor

LighterObj
Burn Fuel_________

FuelCapacity
MinFuel

________MinFuelPercent

BurnFuel

RoRoObj

IsurnL-oLoVehicles
Decemet Lad n C::::::::::::::::::ý>lurnRRDFV ehicies

Ro~o \umAnySpotVehiclei
MakeLoad

LighterObj

LodChange Load Status LoadStatus

<
ShipID

No SetLoadStatus

Figure 9: QOS-Pics Page 3.

62

1 [v LighterObj
Page TELL Lighter To _________________

Onload1

I Onload

Get Onloadiime

G t iO la~me noa~ m

LoNormal

Lighn~ter)

On~oadime Ran~odTime2

OperationalDelay2 Operational~iy

OnLog~rad

L ig hterObg

Burn Fuel FuelCapacity
MinFuel
MinFuelPercent

BurnFuel

Nexdt Page _______

Figure 10: OOS-Pics Page 4.

63

Prey LighterObi
Page TELL Lighter To

CastAndC lear
Ship

CastAnd~la

Get
CastAndClearTime eatndl

LogNormal

LighterObj

CCast~nd~lear~ime

C astAn dC lea r

LighterObi

F uelCapacity
Burn Fuel ipMiFuel

MinFue[Percent

BurnFuel

Last Load

Yes

No

5eNext Page Next Page

Figure 11: OOS-Pics Page 5.

64

P-IPrey RoRoObj
pare

to aeVacate Spot a ShipSpot

T t--SetSpotF
ree

z RoRoObj

Log Time Spot Sj~o

Empty LogidleShipSpotTime

Get Lighter for _________

TELLt LSghte To~gh

LighterObj

Calculate Dista nceT o~ea cI- TransitTime FullLoadSpeed

?Next Page

Figure 12: QOS-Pics Page 6.

65

Prey ihtrb
Page

WAIT
rniimTfansitTime

Transito

LighterObj

__________________________ FuelCapacityBurn Fuel MinFuel
MinFuelPercent

BurnFuel

BeacPObj

Get SpBeacthBeat

ChecSpats

watnBeach~uObj

Spot AvailableI cQueueObj

Yes Add

Pg12Next Page Next Page
BRAVO AF

Figure 13: QOS-Pics Page 7.

66

Pjev Prev,
Page Page LighterObj

V O ALFA Log Time In For TimelnBeachQueuo
Beach Queue_________

ol LogQueueTim e

Operationaerela

UnifomcRea

~~~~ApproachAndMoor +Lgtrb

TGet

Appoac~ndoorApproachAnd~o

Fiur 4: QO-ims Page 8.

Noma



Prey LighterObj
Page

Burn Fuel vFuelCapaci~yI MinFul

Occupy Beach Spoj BeachObj

J BeachSpot

OccupySpot

BeachObj

Log Time In Spot ecpodeim

LogldleBeachSpotTir
Beac~oll~

LighterObi

TELL Lighter To _______________

OffLoad

OffLoad

Get Offfoad Time

Figure 15: QOS-Pics Page 9.

68



Pfev RandTime 1
Page Get Operational _____________________

Delay Time j m ando4b
Operational

Normal or
Uniform Real

WAIT ______

OffLoadTime + LgtrbOperationall~elay4 Lgtrb

Off Load

LighterObj

Burn Fuel o FuelCapacity
MinFuel
UwF i ieiiercpnt

BurnFuel

Last Load NoFulTNo

Yes YeS

Next Page Page 15 Next Page
ALFA BRAVO CHARLIE

Figure 16: OOS-Pics Page 10.

69



Prev PrevPageLighterObj

Cas"nd lear

Get CastAndClear

Timeime

LighterObj

GtCastAndClearim 4_____C _____

CastAnlC lear

LighterObj

FuelCapacity
M in Fuel

Burn Fuel 10 n~fel ~ eI~rrent

BurnFuel

Vacat SpotBeachObj

BeachSpot

SetSpotFree

Figure 17: QOS-Pics Page 11.

70



pape Prey Bea chObj
tonp Page Log Time Spot I 4c~o

Empty eah~o
] Log IdleBeachSpotTin

Get Lighter For
Empty Spot Gtihe

LighterC'bj

TELL Lighter To
0 TransitTo _________

(Ship) TransitTo

LighterObj

Calculate Distance To Ship

MaxSpeed

Next Page

Figure 18: OOS-Pics Page 12.

71



WAIT 
TastiTransitTim e

TransitTo

LighterObj

FuelCapacity
BurnFuelMinFuel

MinFuelPercent

BurnFuel

pGet Spot kt Ship

ChecSpots

Page 20etPge________

StSte 5

Figure 19: r OOPistPage 13.

FALE, hec Chck72t



PrYes

S~StatsObjCalculatetand Dump

Stas 
Se

DumpStats

Replications Reset For NextNo Replication

Yes

Stop S!rmulatlon

Figure 20: OOS-Pics Page 14.

73



P~e 10LighterObj

BRAVO TELLtLighteraT

Get CastAndClear

Timeime

Lighteombj

GtCastAndlClearie 
_________

r tdC5CastAndlClear

LighterObj

FuelCapacity
MinFuel

Burn Fuel 10 UAin F iePp rfo nt

BurnFuel

Vacate Spot Bahb

BeachSpot

SetSpotFree

Figure 21: QOS-Pics Page 15.

74



Pae Prey. BeachObj
top 5 Page Log Time Spot I BeachSpot

Em ptyj
Logidle~eachSpotTin

BLCPObj

Get Lighter For ________

Empty Spot GetLighter

LighterObj

TELL Lighter To
Trans itT o

(RefuelArea) TransitTo

LighterObj

Calculate DistanceToRefuelArE a
TransitTime MaxSpeed

TransitTo

NMext Page

Figure 22: QOS-Pics Page 16.

75



[rev _ _herb

Page
WAIT

Transntitme

LighterObj

Bum Fuel FuelCapacity
MinFuel
MinFuelPercent

BumFuel

FuelCP~bj
Get Spot At
RefuelArea

GetSpot

Nex Pagelre~

Figure 23: Fo Ea-Pch ae 7

Refel~ea n Rfue76o



Prey F ueICPObj
Page

PCet Gas Low Lighter

I 
GetGasLowLighte]

Occupy Refuel Spo

Page 20 Ocpso

Step 6 
7

TELL Lighter To LighterObj
ApproachAndM oor I

(RefuelArea)

ApproachAndMoor

Get admb
ApproachAnd Moor

Time~i

Get adie
Operational De lay Rno~,

LogNormal or
Uniform Real

Next Page

Figure 24: QOS-Pics Page 18.

77



Pre I WAIT LighterObj
Page ApproachAndMoor +lpproachAndMoorTcn

Time1<:: 
:>

ApproachAndMoor

LighterObj
Fuel Capectly

Burn Fuel 10 Pn~u.I
lMnFueIP.*cent111111 _________________

LighterObj
TELL Lighter To _________________

Refuel_______ __

Refuel

Calculate FeCpct
RefuelTime

LighterObj
WAIT

RefuelTime_____ ____

(Refue Area _______Refuel_

LighterObj

NxPaeCastAndClear

Figure 25: OOS-Pics Page 19.

78



Prey a~~w
Page Get rio h

CastAndClearTime

WAiT LighterObj
CastAndCiearTime

CastAndClear

Burn Fuel- ,;c-

Vacate Spot Rfe~o

- L-g9h-erObj

ITELL Lighter To
TransitTo

L (Ship) __

-- -- LighterObj

Calculate
I TransitTime

Next Page

Figure 26: QOS-Pics Page 20.

79



TransitT7

LighterObj

________________________ FuelCapacity
Burn Fuel MmFuel

MinFuelPercent

BurnFuel

Patge 13
Step 7

Figure 27: QOS-Pics Page 21.

80



APPENDIX C RO/RO OFFLOAD MODEL SOURCE CODE

MAIN MODULE RoRoOff;

-----------------------------------------------------------

Module Name: RoRoOff Modified: 26 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: JLOTS RoRo offload model. Simulates the
instream offload of rolling stock from self-sustaining and
non-self-sustaining Roll On / Roll Off ships equiped for
operations using a RoRo discharge facility (RRDF) and/or
Lift On / Lift Off (LoLO) operations. By means of input
files the user is able to change the scenario by altering
the number and type of Beach landing areas, the number and
type of lighterage to be used, the type of ship, and the
characteristics of the refueling facility.
-----------------------------------------------------
FROM RepMngr IMPORT RepManager;
FROM ListAll IMPORT ListMaster;
FROM Builder IMPORT ObjectBuilder;

BEGIN

NEW(RepManager);

NEW(ListMaster);
ASK ListMaster TO ReadAllData;

NEW(ObjectBuilder);
ASK ObjectBuilder TO BuildObjects;

ASK RepManager TO ChangeRunParms;
ASK RepManager TO Replicate;

END MODULE.

81



DEFINITION MODULE ListAll;

--- ---- ----- ------ -- ----- ----- ------ ----- ------ ------ ------

Module Name: ListAll Modified: 26 Jul 93
Author: M. Bailey Modified By: J. S. Noel

Prof. NPG Lt. USN

DESCRIPTION: Defines the ListMasterObj which NEWs the
appropriate objects and fires the methods to read in the
data files so that ship, lighter, and beach objects can be
built.
----------------------------------------------------------.

TYPE

ListMasterObj = OBJECT

ASK METHOD ReadAllData;

ASK METHOD ReadShipList;
ASK METHOD ReadLighterList;
ASK METHOD ReadBeachList;
ASK METHOD ReadFuelAreaList;

END OBJECT;

VAR

ListMaster : ListMasterObj;

END MODULE.

82



IMPLEMENTATION MODULE ListAll;

-----------------------------------------------------------

Module Name: ListAll Last Modified: 26 Jul 93
Author: M. Bailey Modified By: J. S. Noel

Prof. NPG Lt. USN

DESCRIPTION: Implements the ListMasterObj which NEWS the
appropriate objects and fires the methods to read in the
data files so that ship, lighter, and beach objects can be
built.
----------------------------------------------------------.

FROM Builder IMPORT ShipBuilder, BeachBuilder,
LighterBuilder,
FuelAreaBuilder;

FROM ShpList IMPORT MasterShipTypeList;
FROM LtList IMPORT MasterLighterTypeList;
FROM BchList IMPORT MasterBeachTypeList;
FROM RFAList IMPORT MasterRefuelTypeList;
FROM ShpName IMPORT MasterShipNameList, ShipNameRecType;
FROM LtName IMPORT MasterLighterNameList,

LighterNameRecType;
FROM BchName IMPORT MasterBeachNameList, BeachNameRecType;
FROM RFAName IMPORT MasterRefuelNameList,

RefuelNameRecType;
FROM WriteLine IMPORT WriteLine;

OBJECT ListMasterObj;

{ --------------------------------------------------------- }
ASK METHOD ReadAllData;

{ ----------------------------------------------------------

BEGIN

OUTPUT("Reading ship data ");
ASK SELF TO ReadShipList;
OUTPUT("Reading Lighter data ");

83



ASK SELF TO ReadLighterList;
OUTPUT ("Reading Beach data a);
ASK SELF TO ReadBeachList;
OUTPUT ("Reading RefuelArea data")
ASK SELF TO ReadFuelAreaList;

END METHOD;

{---------------------------------------------------}
ASK METHOD ReadShipList;

{---------------------------------------------------}

VAR

Rec :ShipNameRecType;

BEGIN

WriteLine(" Read ShipNameList )
WriteLine(" ");

NEW (MasterShipNameList);
ASK MasterShipNameList TO ReadShipNames;

NEW(MasterShipTypeLiSt);

Rec :=ASK MasterShipNameList Firsto;
WHILE Rec <> NILREC

OUTPUT("Reading ship info for "+ Rec.ShipName);
ASK MasterShipTypeLiSt TO ReadShips(Rec.ShipName);

Rec :=ASK MasterShipNameList Next(Rec);
END WHILE;

END METHOD;

84



-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -- --
ASK METHOD ReadLighterList;
{ ----------------------------------------------------------

VAR

Rec : LighterNameRecType;

BEGIN
WriteLine(" ");
WriteLine(" Read LighterNameList ");
WriteLine(" ");

NEW(MasterLighterNameList);
ASK MasterLighterNameList TO ReadLighterNames;

NEW(MasterLighterTypeList);

Rec := ASK MasterLighterNameLiSt First();
WHILE Rec <> NILREC

OUTPUT("Reading Lighter info for " + Rec.LighterName);
ASK MasterLighterTypeList TO

ReadLighters(Rec. LighterName);

Rec := ASK MasterLignlterNameList Next(Rec);
END WHILE;

END METHOD;

{ ----------------------------------------------------- }
ASK METHOD ReadBeachList;
{ ------------------------------------------------- }

VAR

Rec : BeachNameRecType;

85



BEGIN
WriteLine("")
WriteLine(ft Read BeachNameList )
WriteLine("")

NEW(MasterBeachNameLiSt);
ASK masterBeachNameList TO ReadBeachNames;

NEW (MasterBeachTypeLiSt);

Rec :=ASK MasterBeachNameList Firsto;
WHILE Rec <c> NILREC

OUTPUT("Reading Beach info for "+ Rec.BeachName);
ASK masterBeachTypeLiSt TO ReadBeaches (Rec.BeachName);

Rec :=ASK MasterBeachNameList Next(Rec);
END WHILE;

END METHOD;

{---------------------------------------------------
ASK METHOD ReadFuelAreaList;

I{--------------------------------------------------}

VAR

Rec :RefuelNameRecType;,

BEGIN
WriteLine(" i)

WriteLine(n Read RefuelNameList )
WriteLine(" if);

NEW (MasterRefuelNameList);
ASK MasterRefuelNameList TO ReadRefuelNames;

NEW(MasterRefuelTypeLiSt);

86



Rec := ASK MasterRefuelNameList Firsto;
WHILE Rec <> NILREC

OUTPUT("Reading Refuel info for " + Rec.RefuelName);
ASK MasterRefuelTypeList TO

ReadRefuelArea(Rec. RefuelName);

Rec := ASK MasterRefuelNameLiSt Next(Rec);
END WHILE;

END METHOD;

END OBJECT;

END MODULE.

DEFINITION MODULE RecIOHandle;

I ----------------------------------------------------------
Module Name: RecIOHandle Last Modified: 18 Jun 93
Author: M. Bailey Modified By; J. S. Noel

Prof. NPGS Lt. USN

DESCRIPTION: Defines the RecIOHandleObj. This PROTO object
serves as a platform for input/output objects in the
simulation. The ProduceRec method is the key method which
inheriting objects must override.
---------- -------------------------------------------------

FROM IOMod IMPORT Streamabj;
FROM WriteLine IMPORT WriteLine;

TYPE

SArrayType = ARRAY INTEGER OF STRING;

SHRecType = RECORD
TopString : STRING;
OwnedString : SArrayType;

END RECORD;

87



SHArrayType = ARRAY INTEGER OF SHRecType;

RecIOHandleObj = PROTO

numberIn : INTEGER;
ASK METHOD ReadRecs(IN FileName : STRING);
ASK METHOD ProduceRec(IN HeadString : STRING): #ANYREC;

{Must inherit and override to use ProduceRec. Should
tailor ProduceRec to meet the record type spec. of
your application.}

ASK METHOD ProduceRecByIndex(IN Index : INTEGER):
#ANYREC;

{Produces the record by its index in SHArray. Used
usually when the entire set of records is going to be
produced at once. No override needed, as it relies on
ProduceRec.}

{FindSHRec newly public}

ASK METHOD FindSHRec(IN TopString : STRING;
OUT SHRec : SHRecType);

SHArray : SHArrayType;

ASK METHOD ReadSH(IN File : StreamObj;
OUT SHRec : SHRecType;
OUT error : BOOLEAN);

ASK METHOD DumpRec(IN SHRec : SHRecType);

{ Dumps the rec to sim.out }
ASK METHOD ObjTerminate;

END PROTO;

END MODULE.

88



IMPLEMENTATION MODULE RecIOHandle;

I{---------------------------------------------------

Module Name: RecIOHandle Last Modified: 18 Jun 93
Author: M. Bailey Modified By; J. S. Noel

Prof. NPGS Lt. USN

DESCRIPTION: Implements the RecIOHandleObj. This PROTO
object serves as a platform for input/output objects in the
simulation. The ProduceRec method is the key method which
inheriting objects must override.
----------------------------------------------------------.

FROM IOMod IMPORT StreamObj, FileUseType(Input);
FROM IOMod IMPORT ReadKey;
FROM WriteLine IMPORT WriteLine;

CONST

HeadStringSpew = FALSE;
Spew = FALSE;
LittleSpew = FALSE;

TYPE

StringRecType = RECORD
String : STRING;
Next : StringRecType;

END RECORD;

VAR

NameOfFile : STRING;

PROTO RecIOHandleObj;

I{--------------------------------------------------}
ASK METHOD DumpRec(IN SHRec : SHRecType);
{ Dumps the rec to sim.out }
{--------------------------------------------------------}

89



VAR

i : INTEGER;
max : INTEGER;

BEGIN

WriteLine(SHRec.TopString + -> (has " +

INTTOSTR (HIGH (SHRec. OwnedString))
+ " fields)");

max := HIGH(SHRec.OwnedString);
FOR i := 1 TO max

WriteLine(" ->" + SHRec.OwnedString[i] + .<-.);

END FOR;

END METHOD;

I --------------------------------------------------------- }

ASK METHOD ProduceRec(IN HeadString : STRING): ANYREC;

{ --------------------------------------------------------- }
{This method does nothing, as it needs to be overridden. }

BEGIN

RETURN(NILREC);

END METHOD;

{ ----------------------------------------------------------
ASK METHOD ProduceRecByIndex(IN Index : INTEGER): ANYREC;

S----------------------------------------------------------.

VAR

Rec : ANYREC;

90



BEGIN

IF Index <= HIGH(SHArray)
Rec = ProduceRec (SHArray [Index] .TopString);

ELSE
Rec NILREC;

END IF;

RETURN(Rec);

END METHOD;

{ --------------------------------------------------------- }
ASK METHOD ReadRecs(IN FileName : STRING);

{ -------------------------------------------------- }

VAR

File : StreamObj;
numberOfSH : INTEGER;
i : INTEGER;
error BOOLEAN;
string STRING;

BEGIN

NameOfFile := FileName;
{NameOfFile is a local var used in error message.}

NEW(File);
ASK File TO Open(FileName, Input);

ASK File TO ReadInt(numberOfSH);
ASK File TO ReadLine(string);

numberIn := numberOfSH;

91



IF LittleSpew
WriteLine("Opened file " + FileName + " which has " +

INTTOSTR (numberOfSH) +
"SHRecords");

END IF;

NEW(SHArray, 1..numberOfSH);
FOR i := 1 TO numberOfSH

IF HeadStringSpew
WriteLine(" ----------Rec " + INTTOSTR(i));
OUTPUT("Rec + INTTOSTR(i) + "

END IF;

ReadSH(File, SHArray[i], error);
IF error

OUTPUT("problem reading file ", FileName, w BAD FORMAT
DETECTED at " +
INTTOSTR(i));

WriteLine("problem reading file + FileName + " BAD
FORMAT DETECTED at " +
INTTOSTR(i));

END IF;

END FOR;

END METHOD;

{---------------====--Private Methods==-------------------

S----------------------------------------------------------}
ASK METHOD ReadSH(IN File : StreamObj;

OUT SHRec : SHRecType;
OUT error : BOOLEAN);

--------------------------------------------------------- }

VAR

string : STRING;
junk : STRING;

92



numberOfStrings : INTEGER;
StringRec, OldStringRec : StringRecType;
first : StringRecType;
arrow : STRING;
stringRec : StringRecType;
i : INTEGER;
z : CHAR;

BEGIN

NEW(SHRec);
REPEAT

ASK File TO ReadString(string);
IF ((string = "..") OR (SUBSTR(1,1,string) =

ASK File TO ReadLine(junk);
END IF;

UNTIL ((string <> "..") AND (SUBSTR(l,1,string) <> "PH;

SHRec.TopString := string;

IF HeadStringSpew
OUTPUT(SHRec.TopString);
WriteLine(" " + SHRec.TopString);

END IF;

NEW(StringRec);
numberOfStrings := 1;
first := StringRec;

ASK File TO ReadString(arrow);
IF arrow <> "->"

OUTPUT("file not formatted correctly");
error := TRUE;
RETURN;

ELSE
error := FALSE;

93



END I F;

WHILE string <> u\

ASK File TO ReadString(string);
IF ((string = "..2') OR (SUBSTR(1,1,string)

ASK File TO ReadLine(striflg);

ELSE
OldStringRec := StringRec;
StringRec.String :=string;
NEW(StringRec);
OldStringRec.Next :=StringRec;
numberOfStrings :=numberOfStrings + 1;

END IF;

END WHILE;

ASK File TO ReadLine(string);

IF (numberOfStrings > 0) AND NOT error
NEW(SHRec.OwnedString, 1..numberOfStrings - 2);
stringRec := first;

FOR i 1= TO nunberOfStrings - 2
SHRec.OwnedString[ii := stringRec. String;

IF Spew
OUTPUTUi , stringRec.String);
WriteLine(SHRec.OwnedString [ii +

END IF;

stringRec :=stringRec.Next;

END FOR;

END IF;

94



END METHOD;

{ ---------------------------------------------------- -- ----
ASK METHOD FindSHRec(IN TopString : STRING;

OUT SHRec : SHRecType);
{---------------------------------------------------------

VAR

ThisRec : SHRecType;
i : INTEGER;

BEGIN

i := 0;

REPEAT
INC(i);
ThisRec := SHArray[i];

UNTIL ((i >= HIGH(SHArray)) OR (ThisRec.TopString =

TopString));

IF (ThisRec. TopString = TopString)
SHRec := ThisRec;

ELSE
SHRec NILREC;
WriteLine("FindSHRec of RecIOHandle came up empty

searching for TopString " +
TopString);

WriteLine("while looking in file " + NameOfFile);

END IF;

IF Spew
WriteLine(" !!! find sh rec called with topstring " +

TopString +

95



" and returns rec with topstring "
ThisRec. TopString);

END IF;

END METHOD;

I{--------------------------------------------------}
ASK METHOD ObjTerminate;

({--------------------------------------------------}

VAR

i : INTEGER;
REC : SHRecType;

BEGIN

FOR i := I TO HIGH(SHArray)
REC SHArray[i];
DISPOSE (REC. OwnedString).;
DISPOSE(REC);

END FOR;

END METHOD;

END PROTO;

END MODULE.

DEFINITION MODULE ShpName;

-----------------------------------------------------------

Module Name: ShpName Last Modified: 28 Jul 93
Author: J. S. Noel

96



Lt. USN

DESCRIPTION: Implements the ShipNameListObj and the
ShipNameIORecHandleObj which together provide the means for
inputing the Ship Names into the simulation for a given
scenario.

------------------------------------------------- }

FROM RecIOHandle IMPORT RecIOHandleObj;
FROM ListMod IMPORT QueueList;

TYPE

ShipNameRecType = RECORD
ShipName STRING;

END RECORD;

ShipNameListObj = OBJECT(QueueList[ANYREC :ShipNameRecType])
ASK METHOD ReadShipNames;

END OBJECT;

ShipNameIORecHandleObj=OBJECT(ReclOHandleObj[ANYREC:
ShipNameRecType])

END OBJECT;

VAR

ShipNameIOHandler : ShipNameIORecHandleObj;
MasterShipNameList : ShipNameListObj;

END MODULE.

97



IMPLEMENTATION MODULE ShpName;

---- ----- ------ ------ ----- ------ ----- ----- ------- ------- ---

Module Name: ShpName Last Modified: 28 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements the ShipNameListObj and the
ShipNameIORecHandleObj which together provide the means for
inputing the Beach names into the simulation for a given
scenario.
--------- --------------------------------------------------

FROM RecIOHandle IMPORT SHArrayType;

OBJECT ShipNameListObj;

{ --------------------------------------------------------- }
ASK METHOD ReadShipNames;

I --------------------------------------------------------- }

VAR
Rec : ShipNameRecType;
index : INTEGER;
high : INTEGER;
SHArray : SHArrayType;

BEGIN

IF ShipNameIOHandler = NILOBJ
NEW (ShipNameIOHandler);
ASK ShipNameIOHandler TO ReadRecs ("ShpName.dat");

END IF;

SHArray := ASK ShipNameIOHandler SHArray;
high := HIGH(SHArray);

FOR index := 1 TO high

98



NEW (Rec);
Rec.ShipName SHArray[index] .TopString;
Add(Rec);

END FOR;

END METHOD;

END OBJECT;

END MODULE.

DEFINITION MODULE ShpList;

( ----------------------------------------------------------
Module Name: ShpList Last Modified: 18 Jun 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines the ShipTypeListObj and the
ShipTypeIORecHandleObj which together provide the means for
inputing the RoRo's into the simulation for a given
scenario.
----------------------------------------------------------.

FROM RecIOHandle IMPORT RecIOHandleObj;
FROM ListMod IMPORT QueueList;
FROM Global IMPORT SpotRecType;
FROM Ship IMPORT ShipTypeType;

TYPE

SpotArrayType = ARRAY INTEGER OF SpotRecType;

ShipTypeRecType = RECORD

ShipTypeName : STRING;
TypeShip : ShipTypeType;
DistanceFromBLCP : REAL;

99



NumOfSpots : INTEGER;
SpotArray : SpotArrayType;
NumOfLoLoVehicles : INTEGER;
NumOfRRDFVehicles : INTEGER;
NumOfAnySpotVehicles : INTEGER;

END RECORD;

ShipTypeListObj = OBJECT(QueueList[ANYREC
ShipTypeRecType])

ASK METHOD ReadShips (IN ShipName : STRING);
END OBJECT;

ShipTypeIORecHandleObj = OBJECT(RecIOHandleObj[ANYREC
ShipTypeRecType])

OVERRIDE
ASK METHOD ProduceRec(IN HeadString : STRING):

ShipTypeRecType;
END OBJECT;

VAR

ShipTypeIOHandler : ShipTypeIORecHandleObj;
MasterShipTypeList : ShipTypeListObj;

END MODULE.

IMPLEMENTATION MODULE ShpLiSt;

{-----------------------------------------
Module Name: ShpList Last Modified: 18 Jun 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements the ShipTypeListObj and the
ShipTypeIORecHandleObj which together provide the means for

100



inputing the RoRo's into the simulation for a given
scenario.
---------- -------------------------------------------------

FROM RecIOHandle IMPORT SHRecType;
FROM WriteLine IMPORT WriteLine;
FROM Global IMPORT SpotRecType;
FROM Convert IMPORT SpotTypeToStr,StrToSpotType,

ShipTypeToStr,StrToShipType,
BooleanToStr;

OBJECT ShipTypeIORecHandleObj;

{ ----------------------------------------------------------
ASK METHOD ProduceRec(IN HeadString : STRING):

ShipTypeRecType;
{--------------------------------------------------------}

VAR
SHRec : SHRecType;
Rec : ShipTypeRecType;
index, i : INTEGER;
Char : CHAR;
Spot : SpotRecType;

BEGIN
writeLine(" producing record Ship type " + HeadString);
OUTPUT(" producing record Ship type " + HeadString);
FindSHRec(HeadString, SHRec);
WriteLine(" ");
IF SHRec = NILREC

OUTPUT("No record Found of " + HeadString);
WriteLine("No record Found of " + HeadString);
HALT;

END IF;
OUTPUT(" got SHRec");
NEW(Rec);

Rec.ShipTypeName := SHRec.TopString;
OUTPUT("ShipTypeName is " + Rec. ShipTypeName);
WriteLine("ShipTypeName is " + Rec.ShipTypeName);

101



index 1

Rec .TypeShip := StrToShipType (SHRec .OwnedString [index]);
writeLine("TypeShip is "+ ShipTypeToStr(Rec.TypeShip));
INC(index);

Rec .DistanceFromBLCP := STRTORSAL(SHRec .OwnedString [index]);
WriteLine("DistanceFromBLCP is " +

REALTOSTR(Rec.DistancepromBLCP));
INC(index);

Rec .NumOfSpots := STRTOINT(SHRec .OwnedString [index));
WriteLine("NumOfSpots is "+ INTTOSTR(Rec.NumOfSpots));
INC(index);

NEW(Rec.SpotArray, 1. .Rec.NumOfSpots);
OUTPUT(windex = " + INTrOSTR(index));

IF (Rec.NumOfSpots > 0)
1 1;
WHILE *i <= Rec.NumOfSpots

NEW(Spot);
Spot .SpotClassification

StrToSpotType (SHRec. OwnedString [index]);

WriteLine("Spot "+ INTTOSTR(i) + " is Type "+

SpotTypeToStr (Spot .SpotClassification));

OUTPUT("Spot "+ INTTOSTR(i) + " is Type " +

SpotTypeToStr (Spot. SpotClassification));

Char := SCHAR(SHRec.OwnedString [index+1] * 1);
CASE Char
WHEN 'T'I,'t' Spot.SpotFree TRUE;
WHEN 'F','f' Spot.SpotFree FALSE;

END CASE;
WriteLine("Spot "+ IN'rrOSTR(i) + " is Free (T/F) +

BooleanToStr(Spot.SpotFree));

102



OUTPUT("Spot "+ IN'rrOSTR(i) + " is Free (T/P) +

Char);

Rec.SpotArray[i] : Spot;
1 1= + 1;

index :=index + 2;
END WHILE;

END IF;

index :=index;

Rec .NumOfLoLovehicles :=STRTOINT(SHRec OwnedString [index]);
WriteLine("NumOfLoLovehicles is " +

INTrOSTR(Rec.NumOfLoLovehicles));
INC(index);

Rec.NuznOfRRDFVehicles :=STRTOINT(SHRec.OwnedString [index]);
WriteLine("NumOfRRflFvehicles is "+

INTTOSTR(Rec.NuntOfRRDFVehicles));
INC(index);

Rec.NumOfAnySpotVehicles
STRTOINT(SHRec.OwnedString [index]);

WriteLine("NumafAnySpotVehicles is " +

INCindx);INTTOSTR (Rec .NumOfAnySpotVehicles));

OUTPUT("finished reading Ship type information");

RETURN(Rec);

END METHOD;

END OBJECT;

OBJECT ShipTypeListObj;

103



-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -- - }
ASK METHOD ReadShips(IN ShipType : STRING);

{ ----------------------------------------------------------
VAR
Rec : ShipTypeRecType;

BEGIN
IF ShipTypeIOHandler = NILOBJ

NEW (ShipTypeIOHandler);
ASK ShipTypeIOHandler TO ReadRecs ("ShipType.dat");

END IF;

OUTPUT("ship handler instanciated and full of raw records");
OUTPUT("about to produce type record for " +ShipType);
Rec := ASK ShipTypeIOHandler TO ProduceRec(ShipType);
OUTPUT(" got the record complete ");

IF (Rec <> NILREC)
Add(Rec);

ELSE
OUTPUT (" never found record!");

END IF;

END METHOD;

END OBJECT;

END MODULE.

104



DEFINITION MODULE LtName;

----------------------------------------------------------

Module Name: LtName Last Modified: 28 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines the LighterNameListObj and the
LighterNameIORecHandleObj which together provide the means
for inputing the Lighter Names into the simulation for a
given scenario.
----------------------------------------------------------.

FROM RecIOHandle IMPORT RecIOHandleObj;
FROM ListMod IMPORT QueueList;

TYPE

LighterNameRecType = RECORD
LighterName : STRING;

END RECORD;

LighterNameListObj = OBJECT(QueueList[ANYREC
LighterNameRecType])

ASK METHOD ReadLighterNames;
END OBJECT;

LighterNameIORecHandleObj=OBJECT(RecIOHandleObj [ANYREC:
LighterNameRecType])

END OBJECT;

VAR

LighterNameIOHandler LighterNamelORecHandleObj;
MasterLighterNameList : LighterNameListObj;

END MODULE.

105



IMPLEMENTATION MODULE LtName;

---

Module Name: LtName Last Modified: 28 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements the LighterNameListObj and the
LighterNameIORecHandleObj which together provide the means
for inputing the Lighter Names into the simulation for a
given scenario.
-------------------------------------------------------

FROM RecIOHandle IMPORT SHArrayType;
FROM WriteLine IMPORT WriteLine;

OBJECT LighterNameListObj;

{ -------------------------------------------------- I
ASK METHOD ReadLighterNames;

{ -------------------------------------------------- I

VAR
Rec : LighterNameRecType;
index : INTEGER;
high : INTEGER;
SHArray : SHArrayType;

BEGIN

IF LighterNameIOHandler = NILOBJ
NEW(LighterNameIOHandler);
ASK LighterNameIOHandler TO ReadRecs("LtName.dat");

END IF;

SHArray := ASK LighterNameIOHandler SHArray;
high := HIGH(SHArray);

106



FOR index := 1 TO high
WriteLine("Reading Lighter Name in LtName.mod ");
NEW(Rec);
Rec.LighterName := SHArray[index].TopString;
Add(Rec);

END FOR;

WriteLine("--- -exit ReadLighterNames ------

END METHOD;

END OBJECT;

END MODULE.

DEFINITION MODULE LtLiSt;

{-------------------------------------------

Module Name: LtList Last Modified: 28 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines the LighterTypeListObj and the
LighterTypeIORecHandleObj which together provide the means
for inputing the Lighter's into the simulation for a given
scenario.
------------------------------------------------------

FROM RecIOHandle IMPORT RecIOHandleObj;
FROM ListMod IMPORT QueueList;
FROM Global IMPORT SpotRecType, SpotType;
FROM Lighter IMPORT LighterNameType;

TYPE

LighterTypeRecType = RECORD

107



ID .STRING;

LighterTypeName LighterNameType;
SpotRequired SpotType;
SpeedMax REAL;
SpeedFull REAL;
MaxLoad INTEGER;
FuelCap REAL;
BurnRate :REAL;
MinFuel :REAL;

END RECORD;

LighterTypeListObj =OBJECT(QueueList[ANYREC

LighterTypeRecType])
ASK METHOD ReadLighters (IN LighterName :STRING);

END OBJECT;

LighterTypelOReCHandleObj = OBJECT(ReclOHandleObj [ANYREC
LighterTypeRecTypel)

OVERRIDE
ASK METHOD ProduceRec(IN HeadString : STRING):

LighterTypeRecType;
END OBJECT;

VAR

LighterTypeIOHandler :LighterTypeIOReCHandleObj;
MasterLighterTypeLiSt :LighterTypeListObj;

END MODULE.

108



IMPLEMENTATION MODULE LtList;

I{---------------------------------------------------
Module Name: LtList Last Modified: 18 Jun 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements the LighterTypeListobj and the
LighterTypeIORecHandleObj which together provide the means
for inputing the Lighter's into the simulation for a given
scenario.
---------- -------------------------------------------------

FROM RecIOHandle IMPORT SHRecType;
FROM WriteLine IMPORT WriteLine;
FROM Global IMPORT SpotRecType;
FROM Convert IMPORT SpotTypeToStr, StrToSpotType,

LighterNameTypeToStr,
StrToLighterNameType;

OBJECT LighterTypeIORecHandleObj;

{ ----------------------------------------------------------
ASK METHOD ProduceRec(IN HeadString : STRING):

LighterTypeRecType;
--------------------------------------------------------- }

VAR
SHRec : SHRecType;
Rec : LighterTypeRecType;
index, i : INTEGER;
Char : CHAR;

BEGIN
WriteLine(" producing record Lighter type " + HeadString);
OUTPUT(" producing record Lighter type " + HeadString);
FindSHRec(HeadString, SHRec);
WriteLine(" ");
IF SHRec = NILREC

OUTPUT("No record Found of " + HeadString);

109



WriteLine("No record Found of "+ HeadString);
HALT;

END IF;
OUTPUT(" got SHRec");

NEW(Rec);
Rec.ID :=SHRec.TopString;
WriteLine("LighterlD is "+ Rec.ID);
index :=1;

Rec.LighterTypeName
StrToLighterNameType (SHRec.OwnedString [index]);
OUTPUT("LighterTypeName. is N +
LighterNameTypeToStr (Rec.LighterTypeName));
WriteLine("LighterTypeName is --+
LighterNaMeTypeToStr (Rec.LighterTypeName));
INC(inde~x);

Rec. SpotRequired := StrToSpotType (SHRec.OwnedString [index]);
WriteLine("SpotRequired is " +
SpotTypeToStr(Rec.SpotRequired));
INC (index) ;

Rec.SpeedMax := STRTOREAL(SHRec .OwnedString [index]);
writeLine("MaxSpeed is "+ REALTOSTR(Rec.speedmax));
INC(index);

Rec. SpeedFull := STRTOREAL (SHReC.OwnedString [index]);
WriteLine("Full Load Speed is "+ REALTOSTR(Rec.SpeedFull));
INC(index);

Rec .MaxLoad := STRTOINT(SHRec .OwnedString [index]);
WriteLine("Max Load is "+ INTTOSTR(Rec.MaxLoad));
INC(index);

Rec .FuelCap := STRTOREAL(SHRec .OwnedString [index]);
writeLine("Fuel capacity is "+ REALTOSTR(Rec.FuelCap));
INC(index);

Rec.BurnRate := STRTORz±.iL(SHRec .OwnedString [index]);

110



WriteLine("Fuel burn rate is " + REALTOSTR(Rec.BurnRate));
INC(index);

Rec.MinFuel := STRTOREAL(SHRec.OwnedString[index]);
WriteLine("minimum fuel percentage is " +

REALTOSTR(Rec.MinFuel));
INC(index);

OUTPUT("finished reading Lighter type information");

RETURN(Rec);

END METHOD;

END OBJECT;

OBJECT LighterTypeListObj;

{---------------------------------------------------------
ASK METHOD ReadLighters(IN LighterType : STRING);

{ ----------------------------------------------------------

VAR
Rec : LighterTypeRecType;

BEGIN
IF LighterTypeIOHandler = NILOBJ

NEW(LighterTypeIOHandler);
ASK LighterTypeIOHandler TO ReadRecs("LtType.dat");

END IF;

OUTPUT("Lighter handler instanciated and full of raw
records");
OUTPUT("about to produce type record for " + LighterType);
Rec := ASK LighterTypeIOHandler TO ProduceRec(LighterType);
OUTPUT(" got the record complete ");
IF Rec <> NILREC

Add(Rec);
ELSE

111



OUTPUT(" never found record!");
END IF;

END METHOD;

END OBJECT;

END MODULE.

DEFINITION MODULE BchName;

-----------------------------------------------------------

Module Name: BchName Last Modified: 28 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines the BeachNameListObj and the
BeachNameIORecHandleObj which together provide the means for
inputing the Beach Names into the simulation for a given
scenario.
--------- --------------------------------------------------

FROM RecIOHandle IMPORT RecIOHandleObj;
FROM ListMod IMPORT QueueList;

TYPE

BeachNameRecType = RECORD
BeachName : STRING;

END RECORD;

BeachNameListObj =OBJECT (QueueList [ANYREC:BeachNameRecType])
ASK METHOD ReadBeachNames;

END OBJECT;

112



BeachNameIORecHandleObj = OBJECT(RecIOHandleObj[ANYREC
BeachNameRecTypel)
END OBJECT;

VAR

BeachNamelOHandler BeachNameIORecHandleObj;
MasterBeachNameList BeachNameListObj;

END MODULE.

IMPLEMENTATION MODULE BchName;

----------------------------------------------------------
Module Name: BchName Last Modified: 28 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements the BeachNameListObj and the
BeachNameIORecHandleObj which together provide the means for
inputing the Beach names into the simulation for a given
scenario.
----------------------------------------------------------.

FROM RecIOHandle IMPORT SHArrayType;

OBJECT BeachNameListObj;

{ --------------------------------------------------------- }
ASK METHOD ReadBeachNames;
{ --------------------------------------------------------- }

VAR
Rec : BeachNameRecType;
index : INTEGER;
high : INTEGER;
SHArray : SHArrayType;

113



BEGIN

IF BeachNameIOHandler = NILOBJ
NEW(BeachNameIOHandler);
ASK BeachNameIOHandler TO ReadRecs("BchName.dat");

END IF;

SHArray := ASK BeachNameIOHandler SHArray;
high := HIGH(SHArray);

FOR index := 1 TO high
NEW(Rec);
Rec.BeachName := SHArray[index].TopString;
Add(Rec);

END FOR;

END METHOD;

END OBJECT;

END MODULE.

DEFINITION MODULE BchList;

I ----------------------------------------------------------

Module Name: BchList Last Modified: 28 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines the BeachTypeListObj and the
BeachTypeIORecHandleObj which together provide the means for
inputing the Beaches into the simulation for a given
scenario.
--------- --------------------------------------------------

FROM RecIOHandle IMPORT RecIOHandleObj;
FROM ListMod IMPORT QueueList;
FROM Global IMPORT SpotRecType, SpotType;

114



FROM Beach IMPORT BeachType;
FROM ShpList IMPORT SpotArrayType;

TYPE

BeachTypeRecType = RECORD

ID :STRING;
BeachTypeName :BeachType;
NumOfSpots :INTEGER;
SpotArray :SpotArrayType;
DistanceFrornSLCP :REAL;
DistBeachToArea :REAL;

END RECORD;

BeachTypeListabj = OBJECT(QueueList[ANYREC
BeachTypeRecType])

ASK METHOD Readseaches(IN BeachName : STRING);
END OBJECT;

BeachTypeIORecHandleObj = OBJECT(RecIOHandleObj [ANYREC
BeachTypeRecType])

OVERRIDE
ASK METHOD ProduceRec(IN HeadString : STRING):

BeachTypeRecType;
END OBJECT;

VAR

BeachTypeIOHandler :BeachTypeIORecHandleObj;
masterBeachTypeList :BeachTypeListObj;

END MODULE.

115



IMPLEMENTATION MODULE BchList;

{ ----------------------------------------------------------
Module Name: BchList Last Modified: 28 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements the BeachTypeListObj and the
BeachTypeIORecHandleObj which together provide the means for
inputing the Beaches into the simulation for a given
scenario.
--------- --------------------------------------------------

FROM RecIOHandle IMPORT SHRecType;
FROM WriteLine IMPORT WriteLine;
FROM Global IMPORT SpotRecType;
FROM Convert IMPORT SpotTypeToStr, StrToSpotType,

BeachTypeToStr, StrToBeachType,
BooleanToStr;

OBJECT BeachTypeIORecHandleObj;

{ --------------------------------------------------------- }
ASK METHOD ProduceRec(IN HeadString : STRING):

BeachTypeRecType;
----------------------------------------------------------

VAR
SHRec : SHRecType;
Rec : BeachTypeRecType;
index, i : INTEGER;
Char : CHAR;
Spot : SpotRecType;

BEGIN
WriteLine(" producing record Beach type " + HeadString);
OUTPUT(" producing record Beach type " + HeadString);
FindSHRec(HeadString, SHRec);
WriteLine(" ");

116



IF SHRec = NILREC
OUTPUT("No record Found of "+ HeadString);
writeLine(NNo record Found of g~+ HeadString);
HALT;

END IF;
OUTPUT(" got SHRec");

NEW(Rec);
Rec.ID :=SHRec.TopString;
WriteLine("BeachlD is "+ Rec.ID);
index :=1;

Rec.BeachTypeName
StrToBeachType (SHRec Ownedstring [index]);
OIUrPUT("BeachTypeName is " +
BeachTypeToStr(Rec.BeachTypeName));
WriteLine("BeachTypeName is " +
BeachTypeToStr(Rec.BeachTypeName));
INC(index);

Rec .NumOfSpots := STRTOINT(SHRec .Ownedstring [index]);
writeLine("Number of Spots is + INTTOSTR(Rec.NumOfSpots));
INC(index);

NEW(Rec. SpotArray, 1. .Rec .NumOfSpots);
OUTPUT("index = "+ INTrOSTR(index));

IF (Rec.NumOfSpots > 0)
1 : 1;
WHILE i <= Rec.NumOfSpots

NEW(Spot);
Spot.SpotClassification

StrToSpot7Tytoe SHRec. OwnedString [index]);

WriteLine("Spot "+ INTTOSTRMi + " is Type "+

SpotTypeToStr (Spot. SpotClassification));

OUTrPUT("Spot "+ INTTOSTR(i) + " is Type " +
SpotTypeToStr (Spot .SpotClassification));

117



Char :=SCHAR(SHRec.OwnedString(index+l], 1);
CASE Char
WHEN 'T'g't' Spot.SpotFree TRUE;
WHEN 'F','f' :Spot.SpotFree FALSE;

END CASE;
WriteLine("Spot "+ INTrOSTRWi + " is Free (TIP) '+

BooleanToStr(Spot.SpotFree));
OUTPUT('Spot "+ INTrOSTR(i) + " is Free (TIP) "+

Char);

Rec.SpotArray[i] : Spot;
i 1= + 1;

index :=index + 2;
END WHILE;

END IF;

index :=index;

Rec.DistanceFrornSLCP :=STRTOREAL (SHRec.OwnedString [index]);
WriteLine("DistanceFromSLCP is " +

REALTOSTR(Rec.DistanceFromSLCP));
INC(index);

Rec.DistBeachToArea := STRTOREAL (SHRec.OwnedString (index]);
WriteLine("DistBeachToArea is " +

REALTOSTR(Rec.DistBeachToArea));
INC(index);

OUTPUT ("finished reading Beach type information");

RETUJRN (Rec);

END METHOD;

END OBJECT;

OBJECT BeachTypeListabj;

118



I --- -------------------------------------------------------
ASK METHOD ReadBeaches(IN BeachType : STRING);
{ ------------------------------------------- }

VAR
Rec : BeachTypeRecType;

BEGIN
IF BeachTypeIOHandler = NILOBJ

NEW(BeachTypeIOHandler);
ASK BeachTypeIOHandler TO ReadRecs("BchType.dat");

END IF;

OUTPUT("Beach handler instanciated and full of raw
records");
OU-PUT("about to produce type record for " + BeachType);
Rec := ASK BeachTypeIOHandler TO ProduceRec(BeachType);
OUTPUT(" got the record complete ");
IF Rec <> NILREC

Add(Rec);
ELSE

OUTPUT(" never found record!");
END IF;

END METHOD;

END OBJECT;

END MODULE.

DEFINITION MODULE RFANaMe;

-----------------------------------------------------------
Module Name: RFAName Last Modified: 28 Jul 93
Author: J. S. Noel

Lt. USN

119



DESCRIPTION: Defines the RefuelNameListObj and the
RefuelNameIORecHandleObj which together provide the means
for inputing the Refuel area Names into the simulation for a
given scenario.
-----------------------------------------------------------

FROM RecIOHandle IMPORT RecIOHandleObj;
FROM ListMod IMPORT QueueList;

TYPE

RefuelNameRecType = RECORD
RefuelName : STRING;

END RECORD;

RefuelNameListObj = OBJECT(QueueList[ANYREC
RefuelNameRecTypel)

ASK METHOD ReadRefuelNames;
END OBJECT;

RefuelNameIORecHandleObj = OBJECT(RecIOHandleobj[ANYREC
RefuelNameRecType])

END OBJECT;

VAR

RefuelNameIOHandler : RefuelNameIORecHandleObj;
MasterRefuelNameList : RefuelNameListObj;

END MODULE.

120



IMPLEMENTATION MODULE RFAName;

----- ----- ------- ------- ---- ------- ----- ------- ------- -- -- -
Module Name: RFAName Last Modified: 28 Jul 93

Author: J. S. Noel
Lt. USN

DESCRIPTION: Implements the RefuelNameListObj and the
RefuelNameIORecHandleObj which together provide the means
for inputing the Refuel area Names into the simulation for a
given scenario.
----------------------------------------------------------.

FROM RecIOHandle IMPORT SHArrayType;

OBJECT RefuelNameListObj;

{ -------------------------------------------
ASK METHOD ReadRefuelNames;
{ -------------------------------------------

VAR
Rec : RefuelNameRecType;
index : INTEGER;
high : INTEGER;
SHArray : SHArrayType;

BEGIN

IF RefuelNameIOHandler = NILOBJ
NEW (RefuelNameIOHandler);
ASK RefuelNameIOHandler TO ReadRecs ( "RFAName. dat");

END IF;

SHArray := ASK RefuelNameIOHandler SHArray;
high := HIGH(SHArray);

FOR index := 1 TO high
NEW(Rec);

121



Rec.RefuelName := SHArray[index].TopString;
Add(Rec);

END FOR;

END METHOD;

END OBJECT;

END MODULE.

DEFINITION MODULE RFAList;

S -----------------------------------------------------------

Module Name: RFALiSt Last Modified: 28 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines the RefuelTypeListObj and the
RefuelTypeIORecHandleObj which together provide the means
for inputing the Refuel area into the simulation for a given
scenario.
----------------------------------------------------------.

FROM RecIOHandle IMPORT RecIOHandleObj;
FROM ListMod IMPORT QueueList;
FROM Global IMPORT RefuelSpotRecType;
FROM Refuel IMPORT RefuelSpotArrayType;

TYPE

RefuelTypeRecType = RECORD

AreaTypeName : STRING;
NumOfSpots : INTEGER;
DistAreaToShip : REAL;
SpotArray : RefuelSpotArrayType;
FuelPumpRate : REAL;

122



END RECORD;

RefuelTypeListObj = OBJECT(QueueList[ANYREC
RefuelTypeRecType])

ASK METHOD ReadRefuelArea(IN RefuelAreaName : STRING);
END OBJECT;

RefuelTypeIORecHandleObj = OBJECT(RecIOHandleObj[ANYREC
RefuelTypeRecType])

OVERRIDE
ASK METHOD ProduceRec(IN HeadString : STRING):

RefuelTypeRecType;
END OBJECT;

VAR

RefuelTypeIOHandler : RefuelTypeIORecHandleObj;
MasterRefuelTypeLis- : RefuelTypeListObj;

END MODULE.

IMPLEMENTATION MODULE RFAList;

( ---------------------------------------------------------
Module Name: RFAList Last Modified: 28 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements the RefuelTypeListObj and the
RefuelTypeIORecHandleObj which together provide the means
for inputing the Refuel area into the simulation for a given
scenario.
----------------------------------------------------------.

FROM RecIOHandle IMPORT SHRecType;
FROM WriteLine IMPORT WriteLine;
FROM Global IMPORT RefuelSpotRecType;
FROM Convert IMPORT BooleanToStr;

OBJECT RefuelTypeIORecHandleObj;

123



( --- - - - - - - - - -- - - - - - - - - -- - - - - - - - -
ASK METHOD ProduceRec(IN HeadString :STRING):

RefuelTypeRecType;
--------------------------------------------------- }

VAR
SHRec : SHRecType;
Rec : RefuelTypeRecType;
index, i : INTEGER;
Char : CHAR;
Spot : RefuelSpotRecType;

BEGIN
writeLine(" producing record Refuel Area type "+

HeadString);
OUTPUT(" producing record Refuel Area type "+ HeadString);
FindSHRec (HeadString, SHRec);
WriteLine(" ");
IF SHRec = NILREC

OUTPUT("No record Found of "+ HeadString);
writeLine('No record Found of + HeadString);
HALT;

END IF;
OUTPUT(" got SHRec");

NEW(Rec);
Rec.AreaTypeName := SHRec.TopString;
OUTPUT( "AreaTypeName is " + Rec .AreaTypeName);
writeLine("AreaTypeName is "+ Rec.AreaTypeName);
index := 1;

Rec.NumOfSpots : = STRTOINT(SHRec.OwnedString [index]);
WriteLine("Number of Spots is "+ INTTOSTR(Rec.NumOfSpots));
INC(index);

Rec.DistAreaToShip : = STRTOREAL (SHRec OwnedString [index]);
WriteLine("DistAreaToShip is " +
REALTOSTR(Rec.DiStAreaToShip));

124



INC(index);

NEW(Rec.SpotArray, 1. .Rec.NunmOfSpots);
OUTPU'r("index = " + IN'rTOSTR(index));

IF (Rec.Num~fSpots >0)
1 := 1;
WHILE i <= Rec.Num~fSpots

NEW (Spot) ;

Char := SCHAR (SHRec.OwnedString Iindex],1)
CASE Char
WHEN 'T','t' Spot.RefuelSpotFree :=TRUE;
WHEN 'F','f' Spot.RefuelSpotFree :=FALSE;

END CASE;
WriteLine("Spot w+ IN'rTOSTRWi + " is Free (T/F)

BooleanToStr (Spot.Ref uelSpotFree));
OUTPUT("Spot "+ INTTOSTR(i) + " is Free (T/F) "+

Char);

Rec.SpotArray~il := Spot;
i := 1 + 1;
index :=index + 1;

END WHILE;
END IF;

index := index;

Rec. FuelPuxnpRate := STRTORE.AL (SHRec.OwnedString [index]);
WriteLine( "FuelPumpRate is "+ REALTOSTR(Rec. FuelPumpRate));
INC(index);

OUTPUT("finished reading RefuelArea type information");

RETURN(Rec);

END METHOD;

END OBJECT;

125



OBJECT RefuelTypeListObj;

{ --------------------------------------------------------- }
ASK METHOD ReadRefuelArea(IN RefuelAreaType : STRING);

I ----------------------------------------------------------

VAR
Rec : RefuelTypeRecType;

BEGIN
IF RefuelTypeIOHandler = NILOBJ

NEW (RefuelTypeIOHandler);
ASK RefuelTypeIOHandler TO ReadRecs ("RFAType.dat");

END IF;

OUTPUT("Beach handler instanciated and full of raw
records");
OUTPUT("about to produce type record for " +

RefuelAreaType);
Rec := ASK RefuelTypeIOHandler TO
ProduceRec (RefuelAreaType);
OUTPUT(" got the record complete ");
IF Rec <> NILREC

Add(Rec);
ELSE

OUTPUT(" never found record!");
END IF;

END METHOD;

END OBJECT;

END MODULE.

126



DEFINITION MODULE Builder;

{
Module Name: Builder Last Modified: 26 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines the objectBuilderObj as well as the
four other Queue Objects required to build and store the
RoRo, Lighter, Beach, and FuelArea objects required for the
users scenario.
------------------------------------------------------
FROM GrpMod IMPORT QueueObj;
FROM Ship IMPORT RoRoObj;
FROM Lighter IMPORT LighterObj;
FROM Beach IMPORT BeachObj;
FROM Refuel IMPORT RefuelAreaObj;

TYPE

ObjectBuilderobj = OBJECT
ASK METHOD BuildObjects;

END OBJECT;

ShipBuilderObj = OBJECT(QueueObj[ANYOBJ : RoRoObj])
ASK METHOD BuildShips;

END OBJECT;

LighterBuilderObj = OBJECT(QueueObj[ANYOBJ : LighterObj])
ASK METHOD BuildLighters;

END OBJECT;

BeachBuilderObj = OBJECT(QueueObj[ANYOBJ : BeachObj))
ASK METHOD BuildBeaches;

127



END OBJECT;

FuelAreaBuilderObj = OBJECT(QueueObj[ANYOBJ
RefuelAreaObj1)

ASK METHOD BuildFuelAreas;

END OBJECT;

VAR

ObjectBuilder : ObjectBuilderObj;
ShipBuilder : ShipBuilderObj;
LighterBuilder : LighterBuilderObj;
BeachBuilder : BeachBuilderObj;

FuelAreaBuilder : FuelAreaBuilderObj;

END MODULE.

IMPLEMENTATION MODULE Builder;

----------------------------------------------------

Module Name: Builder Last Modified: 26 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements the ObjectBuilderObj as well as the
four other Queue Objects required to build and store the
RoRo,,Lighter, Beach, and FuelArea objects required for the
users scenario.
-------------------------------------------------------}
FROM Ship IMPORT RoRoObj;
FROM Lighter IMPORT LighterObj;
FROM Beach IMPORT BeachObj;
FROM Refuel IMPORT RefuelAreaObj;
FROM ShpList IMPORT MasterShipTypeList, ShipTypeRecType;
FROM LtList IMPORT MasterLighterTypeList,

LighterTypeRecType;
FROM BchList IMPORT MasterBeachTypeList, BeachTypeRecType;

128



FROM RFAList IMPORT MasterRefuelTypeList,
RefuelTypeRecType;

FROM ShpNaMe IMPORT MasterShipNaMeLiSt;
PROM LtName IMPORT MasterLighterNameList;
FROM BchName IMPORT MasterBeachNameList;
FROM RFAName IMPORT MasterRefuelNaMeList;
FROM ShpName IMPORT ShipNameRecType;
FROM LtName IMPORT LighterNameRecType;
FROM BChNaMe IMPORT BeaChNaxneRecType;
FROM RFANaMe IMPORT RefuelNaMeRecType;
FROM WriteLine IMPORT WriteLine;
FROM SLCP IMPORT WaitForShipQueue;
FROM Convert IMPORT LighterNameTypeToStr;
FROM RepMngr IMPORT RepManager;

OBJECT ObjectBUilderobj;

{ -------------------------------------------------- }
ASK METHOD BuildObjects;

I{--------------------------------------------------}

BEGIN

NEW(ShipBuilder);
ASK ShipBuilder TO BuildShips;

NEW (LighterBuilder);
ASK LighterBuilder TO BuildLighters;

NEW (BeachBuilder);
ASK BeachBuilder TO BuildBeaches;

NEW (FuelAreaBuilder);
ASK FuelAreaBuilder TO BuildFuelAreas;

129



END METHOD;

END OBJECT;

OBJECT ShipBuilderObj;

({-- ---------------------------------------------- }
ASK METHOD BuildShips;

{ ------------------------------------------------- }
VAR

Rec :ShipTypeRecType;
RoRo: RoRoObj;

BEGIN

NEW(Rec);
NEW(RoRo);

Rec :=ASK MasterShipTypeList Firsto;

writeLine("Building ship "+ Rec.ShipTypeName);
WriteLine(" I)

WHILE Rec <> NILREC
ASK RoRo TO GetShipSetup(Rec.ShipTypeName, Rec.TypeShip,

Rec.DistanceFromBLCP,
Rec.NumOf Spots, Rec.SpotArray,
Rec.NumOfLoLoVehicles,
Rec.NumOfRRDFVehicles,
Rec .NumOfAnySpotVehicles);

Add(RoRo);

130



NEW(RORO);
Rec :=ASK MasterShipTypeList Next(Rec);
END WHILE;

END METHOD;

END OBJECT;

OBJECT LighterBuilderobj;

{ -------------------------------------------------- I
ASK METHOD BuildLighters;

{---------------------------------------------------I

VAR

Rec :LighterTypeRecType;
Lighter :LighterObj;

BEGIN

WriteLine("Building Lighter")
WriteLine(" )

I

NEW(Rec);
NEW (Wait ForShipQueue);
NEW (Lighter) ;

Rec :=ASK MasterLighterTypeList First 0;
WHILE Rec <> NILREC

ASK Lighter TO GetLighterSetup(Rec.ID,
Rec.LighterTypeName,
Rec. SpotRequired, Rec.SpeedMax,
Rec. SpeedFull, Rec .MaxLoad,
Rec. FuelCap, Rec .BurnRate,
Rec.MinFuel);

131



Add(Lighter);
ASK WaitForShipQueue TO Add(Lighter);

WriteLine("Number in ship Q is " +
INTTOSTR(ASK WaitForShipQueue numberIn) +
Lighter Name= " +
LighterNameTypeToStr(ASK Lighter
LighterTypeName)
+ " LighterID = " + ASK Lighter LighterID);

NEW(Lighter);
Rec := ASK MasterLighterTypeList Next(Rec);
END WHILE;

END METHOD;

END OBJECT;

OBJECT BeachBuilderObj;

{ -----------------------------------------------
ASK METHOD BuildBeaches;

{ -----------------------------------------------

VAR

Rec : BeachTypeRecType;
Beach : BeachObj;

BEGIN{
WriteLine("Building Beach ");
WriteLine(" ");
}

132



NEW (Rec);
NEW (Beach);

Rec :=ASK MasterBeachTypeLiSt Firsto;
WHILE Rec <> NILREC

ASK Beach TO GetBeachSetup(Rec.ID, Rec.BeachTypeName,
Rec .NumOfSpots, Rec.SpotArray,
Rec.DistanceFromSLCP,
Rec.DiStBeachToArea);

Add (Beach) ;

NEW (Beach) ;
Rec :=ASK MasterBeachTypeList Next(Rec);
END WHILE;

END METHOD;

END OBJECT;

OBJECT FuelAreaBuilderObj;

{ -------------------------------------------------- I
ASK METHOD Build~uelAreas;

{ -------------------------------------------------- }

VAR

Rec :Ref uelTypeRe-.:Type;

RefuelArea :RefuelAreaobj;

BEGIN

WriteLine("Building RefuelArea )
WriteLine(" )

133



NEW (Rec);
NEW(RefuelArea);

Rec : = ASK MasterRefuelTypeList First );
WHILE Rec <> NILREC

ASK RefuelArea TO GetRefuelAreaSetup(Rec.AreaTypeName,
Rec.NumOf Spots,

Rec. DistAreaToShip,
Rec.SpotArray, Rec. FuelPumpRate);
Add (RefuelArea) ;

NEW(RefuelArea);
Rec := ASK MasterRefuelTypeList Next(Rec);
END WHILE;

END METHOD;
END OBJECT;

END MODULE.

DEFINITION MODULE RepMngr;

{ --------------------------------------------------
Module Name: RepMngr Last Modified: 26 Jul 93
Author: M. Bailey Modified By: J. S. Noel

Prof. NPG Lt. USN

DESCRIPTION: Defines the replication manager (RepMngrObj)
for initialization and operation of the simulation.
----------------------------------------------------------.

TYPE

RepMngrObj = OBJECT

MaxNumberOfReps : INTEGER;

134



Iteration : INTEGER;
Done BOOLEAN;
OutputToScreen BOOLEAN;
SeedAlfa INTEGER;
SeedBravo : INTEGER;

ASK METHOD ObjInit;
ASK METHOD ChangeRunParms;
ASK METHOD PrepForRep;
ASK METHOD Replicate;
ASK METHOD ResetForNextRun;

END OBJECT;

VAR

RepManager : RepMngrObj;

END MODULE.

IMPLEMENTATION MODULE RepMngr;

I ----------------------------------------------------------
Module Name: RepMngr Last Modified: 26 Jul 93
Author: M. Bailey Modified By: J. S. Noel

Prof. NPG Lt. USN

DESCRIPTION: Implements the replication manager
( RepMngrObj) for initialization and operation of the
simulation.
----------------------------------------------------------.
FROM WriteLine IMPORT WriteLine;
FROM SimMod IMPORT StartSimulation, ResetSimTime;
FROM CRTMod IMPORT ClearScreen;
FROM IOMod IMPORT ReadKey;
FROM Ship IMPORT RoRoObj;
FROM SLCP IMPORT SLCP;
FROM BLCP IMPORT BLCP;

135



FROM FuelCP IMPORT FuelCP;
FROM Builder IMPORT ShipBuilder;
FROM Stats IMPORT Stats;
FROM Global IMPORT RandTimel,RandTime2;

OBJECT RepMngrObj;

{ ----------------------------------------------------------
ASK METHOD ObjInit;

{ ----------------------------------------------------------

BEGIN

MaxNumberOfReps := 1;
Iteration := 0;
Done := FALSE;
OutputToScreen := FALSE;
SeedAlfa 123456;
SeedBravo 678912;

END METHOD;

{ ----------------------------------------------------------
ASK METHOD ChangeRunParms;

{ ----------------------------------------------------------

VAR

Ch : CHAR;
Seedi : INTEGER;
Seed2 : INTEGER;

BEGIN

ClearScreen;
OUTPUT; OUTPUT;
OUTPUT("?????????????????????????????????????????????????");
OUTPUT;OUTPUT;

136



OUTPUT("The number of replications desired is ... ");

OUTPUT; OUTPUT;
OUTPUT("????????????7?7??????????????????????????????????-) ;

OUTPUT; OUTPUT;
INPUT (MaxNumberOfReps);

ClearScreen;
OUTPUT; OUTPUT;
OUTPUT("?????????????????????????????????????????????????") ;

OUTPUT; OUTPUT;
OUTPUT("Do you want output displayed on the screen?");
OUTPUT; OUTPUT;
OUTPUT("???7??????????????????????7???????????????????????") ;

OUTPUT; OUTPUT;
Ch := ReadKeyo;
IF (Ch = 'y') OR (Ch = 'Y') OR (Ch = 't') OR (Ch = 'T')

OutputToScreen := TRUE;
END IF;

ClearScreen;
OUTPUT; OUTPUT;
OUTPUT("?????????????????????????????????????????????????7") ;

OUTPUT; OUTPUT;
OUTPUT("Do you want to input seeds?");
OUTPUT; OUTPUT;
OUTPUT("?????????????????????????????????????????????????") ;

OUTPUT; OUTPUT;
Ch := ReadKey();
IF (Ch = 'y') OR (Ch = 'Y') OR (Ch = 't') OR (Ch I 'T')

OUTPUT("Input seed number 1. MUST BE INTEGER ");

INPUT(SeedAlfa);
OUTPUT("Input seed number 2. MUST BE INTEGER ");
INPUT(SeedBravo);

END IF;

NEW(RandTimel);
NEW(RandTime2);

137



ASK RandTimel TO SetSeed(SeedAlfa);
ASK RandTime2 TO SetSeed(SeedBravo);

END METHOD;

I --------------------------------------------------------- }
ASK METHOD Replicate;

I{--------------------------------------------------}

VAR

RoRo : RoRoObj;

BEGIN

FOR Iteration := 1 TO MaxNumberOfReps
ResetSimTime (0.0);
WriteLine(" replication " + INTTOSTR(Iteration) +

ASK SELF TO PrepForRep;
ASK SELF TO ResetForNextRun;

IF (Iteration = MaxNumberOfReps)
Done := TRUE;
WriteLine("//RepManager// Done = TRUE");

END IF;

OUTPUT("Simulation clock started.");
WriteLine(" CLOCK STARTS FOR REP " +

INTTOSTR(Iteration) + .. .).;

StartSimulation;

WriteLine(" CLOCK STOPS FOR REP " +

INTTOSTR(Iteration) . ... ). ;

END FOR;

END METHOD;

138



-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -- --
ASK METHOD PrepForRep;

S----------------- - - -- - - - - -- - - -- - - -- - - - - - -- - - - - - - - - -- - - - -- -}

BEGIN

IF ( Iteration = 1
NEW(SLCP);
NEW(BLCP);
NEW(FuelCP);
NEW(Stats);

END IF;

END METHOD;

{ ----------------------------------------------------------
ASK METHOD ResetForNextRun;

{ -------------------------------------------

VAR

RORO : RoRoObj;

BEGIN

WriteLine("----Reset For Next Run----");

IF ( NOT Done )

RoRo := ASK ShipBuilder First();
WHILE RoRo <> NILOBJ

ASK RoRo TO StartTheShow;

RoRO := ASK ShipBuilder Next(RoRo);
END WHILE;

END IF;

139



END METHOD;

END OBJECT;

END MODULE.

DEFINITION MCDULE Global;

{-------------------------------------------

Module Name: Global Last Modified: 18 Jun 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines Global types used in the simulation.
-------------------------------------------------------
FROM RandMod IMPORT RandomObj;

TYPE

SpotType = (LCU, CWF, LoLo);

SpotRecType = RECORD
SpotClassification : SpotType;
SpotFree : BOOLEAN;
TotalIdleTime : REAL;

END RECORD;

RefuelSpotRecType = RECORD
RefuelSpotFree : BOOLEAN;

END RECORD;

SpotIdleTimeRecType = RECORD
StartTime : REAL;
EndTime : REAL;

END RECORD;

140



NameRecType = RECORD

Name : STRING;
END RECORD;

SpotIdleTimeArrayilype = ARRAY INTEGER OF
SpotIdleTimeRecType;

FileNameType = STRING;

DestinationType = (Ship, Bch, Fuel, RefuelFromBeach,
ShipFromRefuel);

SeedArrayType = ARRAY INTEGER OF INTEGER;

VAR

RandTimel : RandomObj;
RandTime2 : RandomObj;

END MODULE.

IMPLEMENTATION MODULE Global;

{ ----------------------------------------------------------

Module Name: Global Last Modified: 18 Jun 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements Global types used in the simulation.
------------------------------------------------- }

{ The functioning components of Global ar in the Definition
Module.}

END MODULE.

141



DEFINITION MODULE Ship;

I{---------------------------------------------------
Module Name: Ship Last Modified: 18 Jun 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines a RoRo (Ship) object.
---- ------------------------------------------------------.

FROM ShpList IMPORT SpotArrayType;
FROM Global IMPORT SpotIdleTimeArrayType, SpotType;
FROM Lighter IMPORT LighterObj;

TYPE

ShipTypeType = (SSR, NSSR);

RoRoObj = OBJECT

ShipName : STRING;
ShipType : ShipTypeType;
DistanceFromBLCP : REAL;
NumSpots : INTEGER;
ShipSpot : SpotArrayType;
NumLoLoVehicles : INTEGER;
NumRRDFVehicles : INTEGER;
NimnAnySpotVehicles : INTEGER;
PermNumLoLo : INTEGER;
PermNumRRDF : INTEGER;
PermNumAnySpot : INTEGER;

LoadSize : INTEGER;
ShipSpotIdleTime : SpotIdleTimeArrayType;
LastLoad : BOOLEAN;

ASK METHOD ObjInit;
ASK METHOD StartTheShow;
ASK METHOD GetShipSetup(IN Name : STRING;

IN Type : ShipTypeType;
IN Numl : REAL;

142



IN Nuni2 : INTEGER;
IN Array : SpotArrayType;
IN Num3 : INTEGER;

IN Num4 : INTEGER;
IN Num5 : INTEGER);

ASK METHOD LogIdleShipSpotTime(IN index : INTEGER;
IN InOutSpotTime : REAL;

IN SpotIdle : BOOLEAN);
ASK METHOD MakeLoad(IN Lighter : LighterObj;

IN index : INTEGER);
ASK METHOD SetSpotFree(IN index : INTEGER);
ASK METHOD CheckSpots(IN SpotTyp : SpotType;

OUT SpotAvail : BOOLEAN;
OUT index INTEGER);

ASK METHOD OccupySpot(IN index : INTEGER);
ASK METHOD ResetShipStats;

END OBJECT;

VAR
RoRo : RoRoObj;

END MODULE.

IMPLEMENTATION MODULE Ship;

{-------------------------------------------
Module Name: Ship Last Modified: 18 Jun 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements a RoRo (Ship) object.
------ ----------------------------------------------------.

FROM ShpList IMPORT SpotArrayType;
FROM Global IMPORT ALL SpotType, SpotRecType,

ALL SpotIdleTimeRecType;
FROM SimMod IMPORT SimTime;

143



FROM SLCP IMPORT SLCP;
FROM Lighter IMPORT LighterObj;
FROM WriteLine IMPORT WriteLine;
FROM Convert IMPORT BooleanToStr, SpotTypeToStr;

OBJECT RoRoObj;

I ------------------------------------------- }
ASK METHOD ObjInit;

{ --------------------------------------------------------- }

BEGIN

LastLoad := FALSE;

END METHOD;

f --- ------------------------------------------------------ }
ASK METHOD StartTheShow;

S------------------------------------------------------}

VAR
i : INTEGER;

BEGIN

FOR i := 1 TO HIGH(ShipSpot)

WriteLine("SpotFree for spot " + INTTOSTR(i) + " is " +

BooleanToStr (ShipSpot [i].SpotFree));

ASK SLCP TO GetLighter(ShipSpot [i] .SpotClassification, i,
SELF);
END FOR;

END METHOD;

144



I --- -------------------------------------------------------
ASK METHOD GetShipSetup(IN Name : STRING;

IN Type : ShipTypeType;
IN Numl : REAL;
IN Num2 : INTEGER;
IN Array : SpotArrayType;
IN Num3 : INTEGER;
IN Num4 : INTEGER;
IN Num5 : INTEGER);

--------------------------------------------------- }

VAR
i : INTEGER;
Rec : SpotIdleTimeRecType;

BEGIN

ShipName := Name;

{
WriteLine("//GetShipSetup// ShipName = " + ShipName);
}

ShipType := Type;
DistanceFromBLCP :. Numi;
NumSpots := Num2;

NEW(ShipSpot, I..NumSpots);
ShipSpot := Array;

{
WriteLine(ShipName + " Spot " + INTTOSTR(1) + " SpotType " +

SpotTypeToStr (ShipSpot [i] .SpotClassification));I

NumLoLoVehicles Num33;
NumRRDFVehicles := Num44;
NumAnySpotVehicles := Num5;

145



NEW(ShipSpotldleTime, 1. .NuznSpots);

FOR i :=1 TO NumSpots
ShipSpot Ii].TotalldleTime := 0.0;

NEW(Rec);
Rec.StartTime :=0.0;
Rec.EndTime 0= .0;
ShipSpotldleTime[i] :=Rec;

END FOR;

PermNumLoLo :=NumLoLovehicles;
PermNumnRRDF :=NuxnRRDFVehicles;
PermNuxnAnySpot :=NumA~nySpotvehicles;

END METHOD;

{---------------------------------------------------I
ASK METHOD LogldleShipSpotTime(IN index :INTEGER;

IN InOutSpotTime :REAL;
IN Spotldle :BOOLEAN);

--------------------------------------------------- }

BEGIN

WriteLine("LogidleSpotTime fired on "+ ShipName);

I

IF Spotldle
ShipSpotldleTime [index] .StartTime := InOutSpotTime;

WriteLine("Spot "+ INTTOSTR(index) + " Idle at "+

REALTOSTR(InOutSpotTime));
WriteLine("")

146



ELSE
ShipSpot IdleTime [index].EndTime := InOutSpotTime;

WriteLine("Spot "+ INTrOSTR(index) + " occupied at"+
REALTOSTR(InOutSpotTirm'-));

WriteLine("")

} hpptidx.oa~l~m
Shipippott[index].Totalldle~ime +

(ShipSpotldleTime [index].EndTime
ShipSpot IdleTime [index].StartTime);

END IF;

END METHOD;

I{--------------------------------------------------
ASK METHOD MakeLoad(IN Lighter :Lighterabj;

IN index :INTEGER);
---------------------------------------------------

VAR
LoadSize :INTEGER;

BEGIN

I
WriteLine("MakeLoad fired f or spot "+ IN'T'OSTR(index) +

on + ShipName )

ASK SELF TO OccupySpot (index);
LoadSize :=ASK Lighter MyLoadSize;

IF ( ShipSpot[index] .SpotClassification = LoLo
IF ( NuxnLoLoVehicles > 0)

147



IF ( NumLoLoVehicles <LoadSize)
LoadSize :=LoadSize - NumLoLovehicles;
NuznLoLoVehicles :=0;

IF ( NumAnySpotVehicles >0
IF ( NwnAnySpotVehicles <LoadSize

NuznAnySpotVehicles :=0;
LastLoad :=TRUE;
ASK SLCP TO SetShipStatus;
ASK Lighter TO SetLoadStatus(LastLoad, SELF);

ELSE I NumAnySpotVehicles > LoadSize )
NuxnAnySpotVehicles NumAnySpotVehicles -

LoadSize;
END IF;

ELSE f NuxnAnySpotVehicles =0

LastLoad :=TRUE;
ASK SLCP TO SetShipStatus;
ASK Lighter TO SetLoadStatus(LastLoad, SELF);

END IF;

ELSE { NumLoLoVehicles > LoadSize}
NumLoLoVehicles NuMLoLoVehicles -LoadSize;

END IF;

ELSE ( NuinLoLoVehicles =0

IF ( NumAnySpotVehicles >0
IF ( NuxnAnySpotVehicles <LoadSize

NuinAnySpotVehicles :=0;
LastLoad :=TRUE;
ASK SLCP TO SetShipStatus;
ASK Lighter TO SetLoadStatus(LastLoad, SELF);

ELSE { NurnAnySpotVehicles > LoadSize )
NUMAnySpotVehicles :=NumAnySpotvehicles-

LoadSize;
END IF;

ELSE { NuxnAnySpotVehicles = 0}

148



LastLoad :=TRUE;
ASK SLCP TO SetShipStatus;
ASK Lighter TO SetLoadStatus(LaStLoad, SELF);

END IF;
END IF;

ELSE {ShipSpot[index].SpotClassification = LCU or CWF}

IF (NuxnRRDFvehicles >0)
IF ( NuznRRDFvehicles <LoadSize

LoadSize :=LoadSize - NumRRDFvehicles;
NuniRRDFVehicles :=0;

IF ( NuxnAnySpotVehicles > 0
IF ( NumAxiySpotVehicles < LoadSize

NumAnySpotvehicles :=0;
LastLoad :=TRUE;
ASK SLCP TO SetShipStatus;
ASK Lighter TO SetLoadStatus(LastLoad, SELF);

ELSE I NumAnySpotVehicles > LoadSize I
NuxnAnySpotVehicles NumAnySpotVehicles-

LoadSize;
END IF;

ELSE I NuxnAnySpotVehicles =0}

LastLoad :=TRUE;
ASK SLCP TO SetShipStatus;
ASK Lighter TO SetLoadStatus(LastLoad, SELF);

END IF;

ELSE
NumRRDFvehicles NumRRflFvehicles -LoadSize;

END IF;

ELSE { NumRRDFVehicles =0}

IF ( NuxnAnySpotvehicles > 0
IF ( NumAnySpotVehicles <LoadSize

NuxnAnySpotVehicles := 0;

149



LastLoad := TRUE;
ASK SLCP TO SetShipStatus;
ASK Lighter TO SetLoadStatus(LastLoad, SELF);

ELSE { NumAnySpotVehicles > LoadSize )
NumAnySpotVehicles := NumAnySpotVehicles -

LoadSize;
END IF;

ELSE { NumAnySpotVehicles = 0 }
LastLoad := TRUE;
ASK SLCP TO SetShipStatus;
ASK Lighter TO SetLoadStatus(LastLoad, SELF);

END IF;
END IF;

END IF;

=
WriteLine("NumLoLoVehicles = " + INTTOSTR(NumLoLoVehicles));
WriteLine("NumnRRDFVehicles = " + INTTOSTR(NuxnRRDFVehicles));

WriteLine("NumAnySpotVehicles = " +

INTTOSTR(unumAnySpotVehicles));I

TELL Lighter TO OnLoad(SELF);

END METHOD;

{ -------------------------------------------
ASK METHOD SetSpotFree(IN index : INTEGER);

{ -------------------------------------------

VAR
Idle : BOOLEAN;

BEGIN

{
WriteLine("SetSpotFree fired for spot " + INTTOSTR(index) +

" on " + ShipName );

I

150



IF ( NOT LastLoad
ShipSpot [index] .SpotFree :- TRUE;
Idle := ShipSpot [index] .SpotFree;
ASK SLCP TOGetLighter (ShipSpot [index] .SpotClassification,

index, SELF);
END IF;

ASK SELF TO LogIdleShipSpotTime(index, SimTimeo, Idle);

END METHOD;

{ ------------------------------------------- }
ASK METHOD CheckSpots(IN SpotTyp : SpotType;

OUT SpotAvail : BOOLEAN;
OUT index : INTEGER);

{--------------------------------------------------------}
VAR

i INTEGER;

BEGIN

{
WriteLine("CheckSpots Fired on " + ShipName);
}

SpotAvail := FALSE;

FOR i := 1 TO HIGH(ShipSpot)
IF (ShipSpot[i].SpotClassification = SpotTyp) AND

(ShipSpot [i] .SpotFree)

SpotAvail := TRUE;
index := i;
ShipSpot [i] .SpotFree := FALSE;
EXIT;

END IF;
END FOR;

151



END METHOD;

{ --- - - - - - - - - - - - - - - - - - - - - - - - - - - -
ASK METHOD OccupySpot(IN index : INTEGER);

{ -------------------------------------------------- }

VAR
Idle : BOOLEAN;

BEGIN

{
WriteLine("Occupy spot fired in RoRo " + ShipName);

}

ShipSpot[index].SpotFree := FALSE;
Idle := ShipSpot[index].SpotFree;

ASK SELF TO LogIdleShipSpotTime(index, SimTime(), Idle);

END METHOD;

{ --------------------------------------------------------- }
ASK METHOD ResetShipStats;
{ --------------------------------------------------------- }

VAR
i : INTEGER;

BEGIN

{
WriteLine("ResetShipStats fired on " + ShipName);}

FOR i := 1 TO HIGH(ShipSpot)
ShipSpot(i].SpotFree := TRUE;

152



ShipSpot[i].TotalIdleTime := 0.0;
ShipSpotIdleTime(i].StartTime := 0.0;
ShipSpotIdleTime[i].EndTime := 0.0;

END FOR;

NumLoLoVehicles PermNumLoLo;
NumRRDFVehicles PermNumRRDF;
NumAnySpotVehicles := PermNumAnySpot;

LastLoad := FALSE;

END METHOD;

END OBJECT;

END MODULE.

DEFINITION MODULE SLCP;

{ ----------------------------------------------------------
Module Name: SLCP Last Modified: 18 Jun 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines the Ships Lighterage Control Point
Object (SLCPObj). After a Lighter CastsaadClears the ship
it asks the RoRoObj to SetSpotFree. This method fires the
GetLighter method in SLCPObj. SLCPObj then pops the first
appropriate lighter off of theAwaitingShipQueue and directs
the lighter to ApproachAndMoor to the RRDF, where the
onload of vehicles can begin.
----------------------------------------------------------.

FROM GrpMcd IMPORT QueueObj;
FROM Global IMPORT SpotType;
FROM Lighter IMPORT LighterObj;
FROM Ship IMPORT RoRoObj;

TYPE

153



ShipDoneRecType = RECORD

ShipDone :BOOLEAN;
END RECORD;

ShipDoneArrayType = ARRAY INTEGER OF ShipDoneRecType;

AwaitingShipQueueObj = OBJECT (QueueObj [ANYOBJ: LighterObj])
END OBJECT;

SLCPObj = OBJECT

NuinLighter :INTEGER;
NurnShip : NTEGER;
ShipStatusIndex :INTEGER;
ShipsDone :ShipDoneArrayType;
AllDone :BOOLEAN;

ASK METHOD Objlnit;
ASK METHOD SetShipStatus;
ASK METHOD GetSpot(IN Lighter Lighterobj);
ASK METHOD GetLighter(IN Spot SpotType;

IN index INTEGER;
IN RoRo RoRoObj);

ASK METHOD ResetSLCP;

END OBJECT;

VAR
WaitForShipQueue :AwaitingShipQueueObj;
SLCP :SLCPObj;

END MODULE.

154



IMPLEMENTATION MODULE SLCP;

{ ----------------------------------------------------------
Module Name: SLCP Last Modified: 18 Jun 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements a Ship Lighter Control Point (SLCP)
object.
----- -----------------------------------------------------.

FROM Global IMPORT ALL SpotType, ALL DestinationType;
FROM Lighter IMPORT LighterObj;
FROM Ship IMPORT RoRoObj;
FROM SimMod IMPORT SimTime;
FROM Builder IMPORT ShipBuilder;
FROM WriteLine IMPORT WriteLine;
FROM Convert IMPORT LighterNameTypeToStr;
FROM Stats IMPORT Stats;
FROM Builder IMPORT ShipBuilder, LighterBuilder;
FROM BLCP IMPORT WaitForBeachQueue;

OBJECT SLCPObj;

I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ASK METHOD ObjInit;

{---------------------------------------------------}
VAR

i : INTEGER;
Rec : ShipDoneRecType;

BEGIN

AllDone := FALSE;
ShipStatusIndex := 1;
NumLighter := ASK LighterBuilder numberIn;
NumShip := ASK ShipBuilder numberIn;

155



NEW(Rec);
NEW(ShipsDone, 1..NumShip);
FOR i := 1 TO HIGH(ShipsDone)

NEW(Rec);
Rec.ShipDone FALSE;
ShipsDone[i] Rec;

END FOR;

END METHOD;

{ --------------------------------------------------------- }
ASK METHOD SetShipStatus;

{ ----------------------------------------------------------
VAR

i : INTEGER;
RORO : ROROObj;

BEGIN

ShipsDone[ShipStatusIndex].ShipDone := TRUE;

IF ( ShipStatusIndex = NumShip
AllDone := TRUE;

IF ( AllDone ) AND ( ASK WaitForShipQueue numberIn =

NumLighter )
WriteLine("---Last Lighter in the Q, Dumping

Stats. ---- " );

RORO := ASK ShipBuilder Firsto;
WHILE RoRo <> NILOBJ

FOR i := 1 TO (ASK RORO NumSpots)

ASK RoRo TO LogIdleShipSpotTime(i,SimTime(),FALSE);

END FOR;

RoRo := ASK ShipBuilder Next(RoRo);

156



END WHILE;

ASK Stats TO DumpStats(SimTime());

ELSE
INC (ShipStatusIndex);

END IF;

END METHOD;

{ ------------------------------------------- }
ASK METHOD GetSpot(IN Lighter : Lighterobj);

{ --------------------------------------------------------- }

VAR

SrotReq : SpotType;
i : INTEGER;
index : INTEGER;
SpotAvail : BOOLEAN;
LogIn : BOOLEAN;
QType : BOOLEAN;
RoRo : RoRoObj;
Dest : DestinationType;

BEGIN

{
WriteLine("GetSpot Fired in SLCP ");}

SpotAvail := FALSE;
SpotReq := ASK Lighter LighterSpot;
Dest Ship;

RoRo ASK ShipBuilder First();
WHILE RoRo <> NILOBJ

157



IF ( ASK RoRo LastLoad
RoRo :=ASK ShipBuilder Next (RoRo);

ELSE
ASK RoRo TO CheckSpots (SpotReg, SpotAvail, i);

IF SpotAvail
TELL Lighter TO ApproachAndmoor (i, Dest, RoRo);
EXIT;

ELSE
RoRo :=ASK ShipBuilder Next(RoRo);

END IF;

END IF;

END WHILE;

IF ( NOT SpotAvail
ASK WaitForShipQueue TO Add(Lighter);
LogIn TRUE; {adding to Q I
QType TRUE; {Q type = ship}
ASK Lighter TO LogQueueTime(SimTimeo, LogIn, QType);

END IF;

IF ( AllDone ) AND ( ASK WaitForShipQueue nuxnberln
Num~Lighter)

WriteLine("---Last Lighter in the Q, Dumping
Stats. ------ );

RoRo := ASK ShipBuilder Firsto;
WHILE RoRo <> NILOBJ

FOR i 1= TO (ASK RoRo NumSpots)

ASK RoRo TO LogldleShipSpotTime (i, SimTime (),FALSE);

158



END FOR;

RORO := ASK ShipBuilder Next(RoRo);
END WHILE;

ASK Stats TO DumpStats(SimTimeo);

END IF;

END METHOD;

{ ----------------------------------------------------------
ASK METHOD GetLighter(IN Spot : SpotType;

IN index : INTEGER;
IN RORO : RoRoObj);

{---------------------------------------------------------

VAR

Lighter : LighterObj;
LogIn : BOOLEAN;
QType : BOOLEAN;
Dest : DestinationType;

BEGIN

{
WriteLine("GetLighter Fired in SLCP. Index = " +

INTTOSTR(index));
I
Dest :=Ship;

{
WriteLine("Number in ship Q At SLCP is " +

INTTOSTR(ASK waitForShipQueue numberIn));
1

159



Lighter := ASK WaitForShipQueue First();

{If Spot available is a LoLo spot then take the first
available from the queue, ELSE, the lighter SpotType must
match the SpotType available for mooring to the RRDF.}

IF ( Spot = LoLo )

IF Lighter <> NILOBJ
ASK WaitForShipQueue TO RemoveThis(Lighter);

LogIn FALSE; { Not entering ship Q }
QType TRUE; { Q type = ship }
ASK Lighter TO LogQueueTime (SimTime ( ),LogIn, QType);
TELL Lighter TO ApproachAndMoor(index, Dest, RoRo);

END IF;

ELSE
WHILE Lighter <> NILOBJ

IF ( ASK Lighter LighterSpot = Spot )
ASK WaitForShipQueue TO RemoveThis(Lighter);
LogIn := FALSE; { Not entering ship Q }
QType TRUE; { Q type = ship }
ASK Lighter TO LogQueueTime (SimTime () ,LogIn, QType);
TELL Lighter TO ApproachAndMoor(index, Dest, RoRo);

EXIT;
END IF;

Lighter := ASK WaitForShipQueue Next(Lighter);

END WHILE;
END IF;

END METHOD;

160



-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -- --

ASK METHOD ResetSLCP;

{ -------------------------------------------
VAR

i : INTEGER;

BEGIN

AllDone := FALSE;
ShipStatusIndex := 1;

FOR i := 1 TO HIGH(ShipsDone)
ShipDone[i].ShipDone := FALSE;

END FOR;

END METHOD;

END OBJECT;

END MODULE.

DEFINITION MODULE Lighter;

{-------------------------------------------
Module Name: Lighter Last Modified: 17 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines a Lighter (Smallcraft or boat) object.
- ----------------------------------------------------}

FROM Global IMPORT SpotType, DestinationType;
FROM Ship IMPORT RoRoObj;

161



TYPE

LighterNameType = (LCU1466 ,LCU1610, LCU2000, CWF11, CWF21,
CWF3l, LSV);

LighterObj = OBJECT

LighterTypeName :LighterNameType;
LighterlD :STRING;
LighterSpot :SpotType;
maxSpeed :REAL;
FullLoadSpeed :REAL;
MyLoadSize :INTEGER;
ShipID :RoRoObj;

FuelCapacity :REAL;
CurrentFuel :REAL;
Fuel BurnRate :REAL;
MmiFuel :REAL;
MinFuelPercent :REAL;

TransitDistance :REAL;
TimelnShipQueue :REAL;
TimelnBeachQueue :REAL;
TimeToTotaloffload :REAL;
LoadStatus :BOOLEAN;
ShipSpotIndex :INTEGER;
BeachSpot Index :INTEGER;
RefuelSpotlndex :INTEGER;

InShipQTime :REAL;
OutShipQTiMe :REAL;
InBeachQTime :REAL;
OutBeachQTiMe :REAL;

162



ASK METHOD ObjInit;
ASK METHOD GetLighterSetup(IN ID : STRING;

IN Name : LighterNameType;
IN Sp : SpotType;

IN Numl : REAL;
IN Num2 : REAL;
IN Num3 : INTEGER;
IN Num4 : REAL;
IN Num5 : REAL;
IN Num6 : REAL);

ASK METHOD LogQueueTime(IN InOutQTime : REAL;
IN EnterQ : BOOLEAN;
IN ShipQ : BOOLEAN);

ASK METHOD SetLoadStatus(IN Status : BOOLEAN;
IN Vessel : RoRoObj);

ASK METHOD BurnFuel (IN BurnTime : REAL);
ASK METHOD ResetLighterStats;

TELL METHOD ApproachAndMoor(IN index : INTEGER;
IN Dest : DestinationType;
IN Obj : ANYOBJ);

TELL METHOD OnLoad(IN RoRo : RoRoObj);
TELL METHOD CastAndClear(IN Berth : DestinationType;

IN Obj : ANYOBJ);
TELL METHOD TransitTo(IN Dest DestinationType;

IN Obj ANYOBJ);

TELL METHOD OffLoad(IN Obj ANYOBJ);
TELL METHOD Refuel(IN Obj ANYOBJ);

END OBJECT;

VAR

Lighter : LighterObj;

END MODULE.

163



IMPLEMENTATION MODULE Lighter;

S------------------ - -- - -- - - -- -- - - - - -- - - - - - - - - -- - -- -- - - - -- - - -
Module Name: Lighter Last Modified: 18 Jun 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements a Lighter (Boat) object.
--------- --------------------------------------------------
FROM MathMod IMPORT EXP;
FROM Ship IMPORT RoRoObj, ALL ShipTypeType;
FROM Beach IMPORT BeachObj;
FROM Refuel IMPORT RefuelAreaObj, RefuelArea;
FROM SLCP IMPORT SLCP;
FROM BLCP IMPORT BLCP;
FROM FuelCP IMPORT FuelCP;
FROM SimMod IMPORT SimTime;
FROM Global IMPORT ALL DestinationType, ALL SpotType;
FROM Stats IMPORT Stats;
FROM WriteLine IMPORT WriteLine;
FROM Convert IMPORT LighterNameTypeToStr, BeachTypeToStr;
FROM RepMngr IMPORT RepManager;

OBJECT LighterObj;

{ -------------------------------------------
ASK METHOD ObjInit;

{ ------------------------------------------- }

BEGIN

TimeInShipQueue := 0.0;
TimeInBeachQueue := 0.0;

InShipQTime := 0.0;
OutShipQTime 0.0;
InBeachQTime := 0.0;
OutBeachQTime := 0.0;

164



TimeToTotalOffload := 0.0;
LoadStatus := FALSE;
ShipSpotIndex 0;
BeachSpotIndex 0;
RefuelSpotIndex 0;
TransitDistance 0.0;

END METHOD;

I ----------------------------------------------
ASK METHOD GetLighterSetup(IN ID : STRING;

IN Name : LighterNameType;
IN Sp : SpotType;
IN Numl : REAL;
IN Num2 : REAL;
IN Num3 : INTEGER;
IN Num4 : REAL;
IN Num5 : REAL;
IN Num6 : REAL);

--------------------------------------------------------- }

BEGIN

LighterID :=ID;
LighterTypeName :=Name;
LighterSpot :=Sp;

{
WriteLine("//GetLighterSetup// LighterTypeName = " +

LighterNameTypeToStr (LighterTypeName) +
"LighterID = " + LighterID);}

MaxSpeed :=Numl;
FullLoadSpeed :=Num2;
MyLoadSize :=Num3;

165



PuelCapacity :=Num4;
FuelBurriRate :=Num5;
MinFuelPercent :=Num6;

CurrentFuel :=FuelCapacity;
MinFuel :=FuelCapacity * MinFuelPercent;
writeLine(m MmiFuel = 0 + REALTOSTR(MinFuel));

END METHOD;

I{--------------------------------------------------}
ASK METHOD LogQueueTime(IN InOutOTime :REAL;

IN EnterO BOOLEAN;
IN ShipQ BOOLEAN);

--------------------------------------------------- }

BEGIN

WriteLine("LogQueueTime fired on "+

LighterNameTypeToStr (LighterTypeNaxne) +
"LighterlD ="+ LighterlD);

IF (EnterQ) AND (ShipQ)
InShipoTime := 0.0;
InShipQTime :=InautQTime;

ELSIF (NOT EnterQ) AND (ShipO)
OutShipQTime 0.0;
OutShipQTime InOutQTime;
ASK SELF TO BurnFuel (OutShipQTime - InShipQTime);
TimelnShipQueue :=TimelnShipQueue + (OutShipQTime-

InShipQTime);
ELSIF (EnterQ) AND (NOT ShipO)

InBeachOTime 0.0;
InBeachQTime InOutQTime;

ELSE
OutBeachQTime 0.0;
OutBeachQTime InOutQTime;

166



ASK SELF TO BurnFuel(OutBeachQTime - InBeachQTime);
TimelnBeachQueue := TimeInBeachQueue + (OutBeachQTime

- InBeachQTime);

END IF;

END METHOD;

{ ------------------------------------------- }
ASK METHOD SetLoadStatus(IN Status : BOOLEAN;

IN Vessel : RoRoObj);
----------------------------------------------------------

BEGIN

{
WriteLine("SetLoadStatus fired on " +

LighterNameTypeToStr(LighterTypeName) +
"LighterID = " + LighterID);

}

LoadStatus := Status;
ShipID := Vessel;

END METHOD;

{ -------------------------------------------
ASK METHOD BurnFuel(IN BurnTime : REAL);

{ -------------------------------------------

BEGIN

CurrentFuel := CurrentFuel - (FuelBurnRate * BurnTime/60.0);

{
WriteLine("Burning fuel. CurrentFuel = " +

REALTOSTR(CurrentFuel));
WriteLine(" ");
}

167



END METHOD;

{ -- }
ASK METHOD ResetLighterStats;

{ -------------------------------------------------- }

BEGIN

{
WriteLine("ResetLighterStats " + LighterID);

}
InShipQTime 0.0;
OutShipQTime 0.0;
InBeachQTime 0.0;
OutBeachQTime 0.0;

TimelnShipQueue 0.0;
TimeInBeachQueue 0.0;
TimeToTotalOffload := 0.0;
LoadStatus := FALSE;
ShipSpotIndex 0;
BeachSpotIndex 0;
RefuelSpotIndex 0;
TransitDistance 0.0;
CurrentFuel := FuelCapacity;

END METHOD;

{-------------------------------------------
TELL METHOD ApproachAndMoor(IN index INTEGER;

IN Dest DestinationType;
IN Obj ANYOBJ);

{-------------------------------------------

VAR
ApproachAndMoorTime : REAL;
OperationalDelay : REAL;
RoRo : RoRoObj;
Beach : BeachObj;
RefuelArea RefuelAreaObj;

168



MeanCWF :REAL;
MeanLCU :REAL;

BEGIN

IF ( Dest = Ship

ShipSpotIndex index;

RoRo := Obj;

IF ( ASK RoRo ShipType =SSR

MeanCWF := 10.5;
MeanLCU :=14.25;

ELSE { ShipType =NSSR}
MeanCWF :=8.0;
MeanLCU :=14.25;

END IF;

IF LighterSpot = CWF
ApproachAndmoorTime :=ASK RandTimel Normal (MeanCWF,

3.22);

OperationalDelay := ASK RandTime2 Normal(2.0, 0.85);
ELSE { LighterSpot = LCU I

ApproachAndMoorTime := ASK RandTimel Normal (MeanLCU,
2.22);

OperationalDelay :=ASK RandTime2 Normal(2.0, 0.85);

END IF;

ELSIF ( Dest = Bch
BeachSpotlndcx index;

IF LighterSpot =CWF

ApproachAndmoorTime :=ASK RandTimel Normal (17.0,3.43);
OperationalDelay :=EXP (ASK RandTime2

Normal(1. 0,0. 85) )

169



ELSE { LighterSpot = LCU I
ApproachAndmoorTime :=ASK RandTimel

Normal(11.0,4.298);
OperationalDelay :=ASK RandTime2 UniformReal (1.0,3.0);

END IF;

ELSE

{Dest = RefuelArea}

RefuelSpotlndex := index;

IF LighterSpot = CWF
ApproachAndmoorTime :=ASK RandTimel Normal (17.0,3.43);
OperationalDelay ASK RandTime2 Normal(1.0, 0.85);

ELSE f LighterSpot =LCU I
ApproachAndMoorTime :=ASK RandTimel

Normal( 11. 0,4. 298) ;
OperationalDelay :=ASK RandTime2 UniforrnReal (1.0,3.0);

END IF;

END IF;

WAIT DURATION ApproachAndMoorTime + OperationalDelay
END WAIT;

ASK SELF TO BurnFuel(ApproachAndMoorTime +
OperationalDelay);

IF ( Dest = Ship)

WriteLine("'Approach-AndMoor Ship 11 + "ShipSpot = " +

INTTOSTR(ShipSpotlndex) + LighterID ="+

LighterID);
writeLine(" Approacl3AndMoorTime =+

170



REALTOSTR (ApproachAndMoorTime +
OperationalDelay));

ASK RoRo TO MakeLoad(SELF, ShipSpotIndex);
ELSIF ( Dest = Bch

writeLine("'ApproachAndMoor Beach "+ " BeachSpot = " +

INTTOSTR(BeachSpotlndex) + " LighterlD = " +

LighterlD);
writeLine(n ApproacliAndMoorTime ="+

REALTOSTR (ApproachAndMoorTime +
OperationalDelay));

Beach :=Obj;
ASK Beach TO OccupyBeachSpot (BeachSpotIndex);
TELL SELF TO Of fLoad(Beach);

ELSE
{Dest = RefuelArea}

writeLine(tlApproachAndMoor RefuelArea "+ 11 RefuelAreaSpot
= " + INTTOSTR(RefuelSpotlndex) +

LighterlD = " + LighterlD);
writeLine(", ApproachAndMoorTime = 11 +

REALTOSTR (ApproachAndmoorTime +
operationalDelay));

RefuelArea := Obj;
TELL SELF TO Refuel(Refuelbrea);

END IF;

END METHOD;

{---------------------------------------------------I
TELL METHOD OnLoad (IN RoRo: RORoObj);

---------------------------------------------------}

171



VAR
OnLoadTime :REAL;

OperationalDelay2 :REAL;
MeanCWF :REAL;
MeanLCU :REAL;

BEGIN

IF ( ASK RoRo ShipType =SSR

MeanChF 16.0;
MeanLCU 15.85;

ELSE { ShipType = NSSR}
MeanCWF 25.0;
MeanLCU 18.0;

END IF;

IF LighterSpot =CWF

OnLoadTime :=ASK RandTimel Normal(MeanCWF, 3.87);
OperationalDelay2 :=EXP (ASK RandTime2

Normal(1. 24, 1. 186))
OnLoadTime := OnLoadTime * FLOAT (MyLoadSize);

ELSIF LighterSpot = LCU
OnLoadTime := ASK RandTimel Normal (MeanLCU, 3.87);
OperationalDelay2 := ASK RandTime2 Normal(1.0, 0.42);
OnLoadTime OnLoadTime * FLOAT (MyLoadSize);

ELSE
OnLoadTirne ASK RandTime2 Normal(10.25, 5.75);
OnLoadTime =OnLoadTime * FLOAT (MyLoadSize);

END IF;

WAIT DURATION OnLoadTime + OperationalDelay2
END WAI T;

172



WriteLine("Onload fired "+

LighterNanieTypeToStr (LighterTypeName) +
" LighterID =" + LighterlD + " Ship is "+ ASK

RoRo ShipName);
WriteLine("OnLoadTime = " + REALTOSTR(OnLoadTime +

OperationalDelay2));
WriteLine(" )

I

ASK SELF TO BurnFuel (OnLoadTimre + OperationalDelay2);

TELL SELF TO CastAndClear(Ship, RoRo);

END METHOD;

I{--------------------------------------------------}
TELL METHOD CastAndClear(IN Berth :DestinationType;

IN Obj ANYOBJ);

--------------------------------------------------- }

VAR
CastAndClearTime REAL;
RoRo RoRoObj;
Beach BeachObj;
Ref uelArea RefuelAreaObj;
MeanCWF REAL;
MeanLCU REAL;
Dest DestinationType;

BEGIN

IF ( Berth = Ship
RoRo := Obj;

173



IF ( ASK RoRo ShipType =SSR

MeanCWF :=5.0;
MeanLCU :=2.0;

ELSE { ShipType = NSSR}
MeanCWF :=4.0;
MeanLCU :=4.0;

END IF;

IF LighterSpot = CWF
CastAndClearTime :=ASK RandTimel Normal (MeanCWF. 1.33);

ELSE { LighterSpot = LCU I
CastAndClearTime :=ASK RandTimel

UniforrnReal(MeanLCU, 2.5);

END IF;

ELSIF ( Berth =Bch
Beach := Obj;

IF LighterSpot = CWF
CastAndClearTime :=ASK RandTimel Normal(9.9, 1.76);

ELSE { LighterSpot = LCU I
CastAndClearTime :=ASK RandTimel

UniformReal (1.75,3.0);

END IF;

ELSE

{Berth = RefuelArea

IF LighterSpot = CWF
CastAndClearTime := ASK RandTimel Normal(9.9, 1.76);

ELSE I LighterSpot = LCU )
CastAndClearTime :=ASK RandTimel

UniformReal(1.75, 3.0);

END IF;

174



END IF;

WAIT DURATION CastAndClearTime
END WAIT;

ASK SELF TO BurnFuel(CastAndClearTime);

IF ( Berth = Ship )

{If this Lighter has the last load, LoadStatus = T, then
the Lighter simply transits. If this is not the last
load, then the RoRo sets a Spot free thus starting the
whole lighter cycle for the next Lighter of the
appropriate type in the AwaitingShipQueue.}

WriteLine(LighterNameTypeToStr(LighterTypeName) +
LighterID = " +
LighterID + " CastAndClear Ship " + ASK RoRo
ShipName);

WriteLine("CastAndClearTime = " +

REALTOSTR(CastAndClearTime));
WriteLine(" N);

Dest := Bch;

IF LoadStatus
TELL SELF TO TransitTo(Dest, RoRo);

ELSE
ASK RoRo TO SetSpotFree(ShipSpotIndex);
TELL SELF TO TransitTo(Dest, RoRo);

END IF;

ELSIF ( Berth = Bch )

{After Offload and CastAndClear are complete, check fuel
status (only one check in cycle). If less than or equal

175



to the minimum allowable, the lighter must transit to
the refueling area. If LoadStatus = T, then lighter has
just carried the last load to the beach and it is
returning to the ShipQ.}

WriteLine(LighterNameTypeToStr(LighterTypeName) +
LighterID = " +
LighterID + " CastAndClear Beach " +

BeachTypeToStr(ASK Beach BeachMake));
WriteLine("CastAndClearTime = " +

REALTOSTR(CastAndClearTime));
WriteLine(" ");

IF LoadStatus
Dest := Ship;
TELL SELF TO TransitTo(Dest, Beach);
RETURN;

ELSE
IF (CurrentFuel <= MinFuel)

Dest := Fuel;
ASK Beach TO SetSpotFree(BeachSpotIndex);
TELL SELF TO TransitTO(Dest, Beach);

ELSE
Dest := Ship;
ASK Beach TO SetSpotFree(BeachSpotIndex);

WriteLine("//Fuel Status// MinFuel = " +

REALTOSTR(MinFuel) +
"CurrentFuel-" +

REALTOSTR(CurrentFuel));

TELL SELF TO TransitTo(Dest, Beach);
END IF;

176



END I F;

ELSE

{ Berth =RefuelArea}

Dest :=ShipFrornRefuel;
RefuelArea :=Obj;

WriteLine (LighterNameTypeToStr (LighterTypeName) +
LighterlD ="+ LighterID + " CastAndClear
RefuelArea "+ ASK RefuelArea AreaName);

WriteLine("CastAndClearTime = " +

REALTOSTR(CastAndClearTime));

WriteLine("")

ASK RefuelArea TO SetSpotFree(RefuelSpotlndex);
TELL SELF TO TransitTo(Dest, RefuelArea);

END IF;

END METHOD;

({--------------------------------------------------I
TELL METHOD TransitTo(IN Dest DestinationType;

IN Obj ANYOBJ);
---------------------------------------------------I

VAR

TransitTime :REAL;
RoRo :RoRoObj;
Beach :Beachobj;
RefuelArea RefuelAreaobj;

177



BEGIN

IF ( Dest = Bch

RoRo :=Obj;

TransitDistance :-ASK RoRo DistanceFromBLCP;

TransitTime :=TransitDistance! (FullLoadSpeed *0. 65) *60 .0;

WriteLine (LighterNameTypeToStr (LighterTypeName) +
LighterlD = " +

LighterlD + " TransitTo fired, now leaving "+

ASK RoRo ShipName + " for BLCP. ");
writeLine("TransitTime ="+ RE&ALTOSTR(TransitTime));
WriteLine(" ;

ELSIF ( Dest = Ship)

Beach :=Obj;

TransitDistance :=ASK Beach DistanceToSLCP;

TransitTime := TransitDistance/(MaxSpeed * 0.65) * 60.0;

WriteLine (LighterNameTypeToStr (LighterTypeName) +
LighterlD = " +

LighterlD + " TransitTo Fired, now leaving "+

BeachTypeToStr(ASK Beach Beachmake) + " For
SLCP.");

WriteLine("TransitTime ="+ REALTOSTR(TransitTime));
WriteLine(" i)

ELSIF (Dest =Fuel)

178



Beach :=Obj;
Dest :=RefuelFromBeach;

TransitDistance :=ASK Beach DiStFromBeachToRefuel;
TransitTime :=TransitDistance/(MaxSpeed * 0.65) *60.0;

WriteLine (LighterNameTypeToStr (LighterTypeNaxne) +

LighterID = " +

LighterlD + " TransitTo fired, now leaving
beach for RefuelArea ");

WriteLine ("TransitTime ="+ REALTOSTR (TransitTime));
WriteLine(" ")

ELSE

{Dest = ShipFromRefuel

RefuelArea :=Obj;

TransitDistance := ASK Ref uelArea DistFrornRefuelToShip;

TransitTime := TransitDistance/(MaxSpeed * 0.65) *60.0;

WriteLine (LighterNameTypeToStr (LighterTypeNarne) +

LighterID = " +

LighterID + " TransitTo fired, now leaving "+

ASK RefuelArea AreaName + " for SLCP ");

writeLine("TransitTime ="+ REALTOSTR(TransitTime));
WriteLine(" )

END IF;

WAIT DURATION TransitTime
END WAIT;

179



ASK SELF TO BurnFUel (TransitTime);

IF ( Dest = Bch)
ASK BLCP TO GetSpot(SELF);

ELSIF (Dest = Ship)
ASK SLCP TO GetSpot(SELF);

ELSIF (Dest = RefuelFroznBeach
ASK FuelCP TO GetFuelSpot(SELF);

ELSE
{Dest = ShipFrornRefuel}
ASK SLCP TO GetSpot(SELF);

END IF;

END METHOD;

I{--------------------------------------------------}
TELL METHOD Of fLoad(IN Obj :ANYOBJ);

{---------------------------------------------------I

VAR
Of fLoadTime :REAL;
OperationalDelay4 :REAL;
Berth : DestinationType;
Beach : Beachobj;

BEGIN

IF LighterSpot =CWF

Of fLoadTime ASK RandTimel Normal(1O.O, 3.43);
OperationalDelay4 :=ASK RandTime2 UniformReal(O.O, 1.5);
Of fLoadTime := Of fLoadTime * FLOAT (MyLoadSize);

ELSE I LighterSpot = LCU I
Of fLoadTime := ASK RandTimel Normal(3.0, 0.859);
OperationalDelay4 := ASK RandTime2 Norxnal(1.0, 0.333);
Of fLoadTime := Of fLoadTime * FLOAT (lyLoadSize);

180



END IF;

WAIT DURATION OffLoadTime + OperationalDelay4
END WAIT;

Beach := Obj;

{
WriteLine(LighterNameTypeToStr(LighterTypeName) +

LighterID = " +

LighterID + " Offload fired at " +

BeachTypeToStr(ASK Beach BeachMake));
WriteLine("OffLoadTime = " + REALTOSTR(OffLoadTime +

OperationalDelay4));
WriteLine(" ");}

ASK SELF TO BurnFuel(OffLoadTime + OperationalDelay4);

Berth := Bch;

TELL SELF TO CastAndClear(Berth, Beach);

END METHOD;

{ ------------------------------------------- }
TELL METHOD Refuel(IN Obj : ANYOBJ);

{ -------------------------------------------
VAR
RefuelTime : REAL;
Rate : REAL;
RefuelArea : RefuelAreaObj;

BEGIN

181



WriteLine(LighterNameTypeToStr(LighterTypeName) +
LighterID = " +

LighterID + " Refueling ");
I

RefuelArea := Obj;

Rate := ASK RefuelArea PumpRate;
RefuelTime ((FuelCapacity - CurrentFuel) / Rate) * 60.0;
CurrentFuel FuelCapacity;

{
WriteLine("RefuelTime = " + REALTOSTR(RefuelTime));
WriteLine(" )
}

WAIT DURATION RefuelTime
END WAIT;

TELL SELF TO CastAndClear(Fuel, Obj);

END METHOD;

END OBJECT;

END MODULE.

DEFINITION MODULE BLCP;

{-------------------------------------------
Module Name: BLCP Last Modified: 18 Jun 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines the Beach Lighterage Control Point
Object (BLCPObj). After a Lighter CastsandClears the beach

182



it asks the BeachObj to SetSpotFree. This method fires the
GetLighter method in BLCPObj. BLCPObj then pops the first
appropriate lighter off of theAwaitingBeachQueue and directs
the lighter to ApproachAndMoor to the Beach, where the
offload of vehicles can begin.
------------------------------------------------------
FROM GrpMod IMPORT QueueObj;
FROM Lighter IMPORT LighterObj;
FROM Beach IMPORT BeachObj;

TYPE

AwaitingBeachQueueObj = OBJECT(QueueObj[ANYOBJ: LighterObj])
END OBJECT;

BLCPObj = OBJECT

ASK METHOD ObjInit;
ASK METHOD GetSpot(IN Lighter LighterObj);
ASK METHOD GetLighter(IN index INTEGER;

IN Beach BeachObj);

END OBJECT;

VAR

WaitForBeachQueue : AwaitingBeachQueueObj;
BLCP : BLCPObj;

END MODULE.

IMPLEMENTATION MODULE BLCP;

{-------------------------------------------
Module Name: BLCP Last Modified: 17 Jul 93
Author: J. S. Noel

Lt. USN

183



DESCRIPTION: Implements a Ship Lighter Control Point (SLCP)
object.
--------- --------------------------------------------------

FROM Global IMPORT SpotType,
ALL DestinationType;

FROM Lighter IMPORT LighterObj;
FROM Beach IMPORT BeachObj;
FROM SimMod IMPORT SimTime;
FROM Builder IMPORT BeachBuilder;
FROM WriteLine IMPORT WriteLine;

OBJECT BLCPObj;

{ --------------------------------------------------------- }

ASK METHOD ObjInit;

{ ----------------------------------------------------------

BEGIN

NEW(WaitForBeachQueue);

END METHOD;

{ ----------------------------------------------------------
ASK METHOD GetSpot(IN Lighter : LighterObj);

{ -------------------------------------------

VAR
i : INTEGER;
SpotAvail : BOOLEAN;
LogIn : BOOLEAN;
ThisQ : BOOLEAN;
TheBeach : BeachObj;
Dest : DestinationType;

BEGIN

{
WriteLine("GetSpot Fired in BLCP ");

1

184



SpotAvail := FALSE;
Dest := Bch;

TheBeach := ASK BeachBuilder Firsto;
WHILE TheBeach <> NILOBJ

ASK TheBeach TO CheckSpots(SpotAvail, i);

IF SpotAvail
TELL Lighter TO ApproachAndrdoor(i, Dest, TheBeach);
EXIT;

END IF;

TheBeach := ASK BeachBuilder Next(TheBeach);
END WHILE;

IF ( NOT SpotAvail
ASK WaitForBeachQueue TO Add(Lighter);
LogIn := TRUE; { adding to Q }
ThiSQ := FALSE; Q 0 type = Beach }
ASK Lighter TO LogQueueTime(SimTimeo, LogIn, ThisQ);

END IF;

END METHOD;

{ ----------------------------------------------------------
ASK METHOD GetLighter(IN index : INTEGER;

IN Beach : BeachObj);
{---------------------------------------------------------

VAR
Lighter : LighterObj;
LogIn : BOOLEAN;
ThisQ : BOOLEAN;
Dest DestinationType;

BEGIN

{

185



WriteLine("GetLighter Fired in BLCP ");

}

Dest := Bch;

Lighter := ASK WaitForBeachQueue First();
IF Lighter <> NILOBJ

ASK WaitForBeachQueue TO RemoveThis(Lighter);
LogIn FALSE; { not adding to Q }
ThisQ FALSE; { Q type = beach }
ASK Lighter TO LogQueueTime(SimTimeo, LogIn, ThisQ);
TELL Lighter TO ApproachAndMoor(index, Dest, Beach);
ASK Beach TO OccupyBeachSpot(index);

END IF;

END METHOD;

END OBJECT;

END MODULE.

DEFINITION MODULE Beach;

I ----------------------------------------------------------
Module Name: Beach Last Modified: 20 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines a Beach object.
-------------------------------------------------------
FROM ShpList IMPORT SpotArrayType;
FROM Global IMPORT SpotIdleTimeArrayType;

186



TYPE

BeachType = (BareBeach, FloatingCWPier, ELCAS);

BeachObj = OBJECT

BeachMake : BeachType;
BeachID : STRING;
NumSpots : INTEGER;
BeachSpot : SpotArrayType;
DistanceToSLCP : REAL;
DistFromBeachToRefuel : REAL;
BeachSpotIdleTime : SpotIdleTimeArrayType;

ASK METHOD ObjInit;
ASK METHOD GetBeachSetup(IN ID : STRING;

IN Name : BeachType;
IN Numl : INTEGER;
IN Array : SpotArrayType;
IN Num2 : REAL;
IN Num3 : REAL);

ASK METHOD SetSpotFree(IN index : INTEGER);
ASK METHOD CheckSpots(OUT SpotAvail : BOOLEAN;

OUT index : INTEGER);
ASK METHOD LogIdleBeachSpotTime(IN index : INTEGER;

IN InOutSpotTime : REAL;
IN SpotIdle : BOOLEAN);

ASK METHOD OccupyBeachSpot(IN index : INTEGER);
ASK METHOD ResetBeachStats;

END OBJECT;

VAR
Beach : BeachObj;

END MODULE.

187



IMPLEMENTATION MODULE Beach;

f{---------------------------------------------------
Module Name: Beach Last Modified: 18 Jun 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements a Beach object.
--------- -------------------------------------------------}
FROM ShpList IMPORT SpotArrayType;
FROM Global IMPORT ALL SpotType, SpotRecType,

ALL Spot IdleTimeRecType;
FROM SimMod IMPORT SimTime;
FROM BLCP IMPORT BLCP;
FROM WriteLine IMPORT WriteLine;
FROM Convert IMPORT BeachTypeToStr;

TYPE

OBJECT BeachObj;

{ ----------------------------------------------------------
ASK METHOD ObjInit;

{ --------------------------------------------------------- }

BEGIN

END METHOD;

{ ----------------------------------------------------------
ASK METHOD GetBeachSetup(IN ID : STRING;

IN Name : BeachType;
IN Numl : INTEGER;
IN Array : SpotArrayType;
IN Num2 : REAL;
IN Num3 : REAL);

---------------------------------------------

188



VAR
i :INTEGER;
Rec :SpotldleTimeRecType;

BEGIN

BeachlD ID;

Beachmake Name;

WriteLine("//GetBeachSetup// BeachMake "+

BeachTypeToStr(BeachMake));

NuxnSpots :=Numi;

NEW (BeachSpot, 1.. NuiSpots);
BeachSpot Array;

DistanceToSLCP Nuln2;
DistFrornBeachToRefuel :=Num3;

NEW (BeachSpotldleTime, 1.. NumSpots);

FOR i := 1 TO NumSpotS
BeachSpot [ii .TotalldleTime := 0.0;

NEW(Rec);
Rec.StartTime :=0.0;
Rec.EndTime := 0.0;
BeachSpotldleTime[i] :=Rec;

END FOR;

END M4ETHOD;

189



-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -- - }
ASK METHOD LogIdleBeachSpotTime(IN index : INTEGER;

IN InOutSpotTime : REAL;

IN SpotIdle : BOOLEAN);

{-------------------------------------------}

BEGIN
{
WriteLine("LogIdleBpachSpotTime Fired ");}

IF SpotIdle
BeachSpotIdleTime[index].StartTime = InOutSpotTime;

ELSE
BeachSpotIdleTime[index].EndTime := InOutSpotTime;

BeachSpot[index].TotalIdleTime

BeachSpot[index].TotalIdleTime +

(BeachSpotIdleTime[index].EndTime -

BeachSpotIdleTime[index].StartTime);

END IF;

END METHOD;

{ -------------------------------------------
ASK METHOD SetSpotFree(IN index : INTEGER);

{ -------------------------------------------

VAR

Idle : BOOLEAN;

BEGIN

{
WriteLine("SetSpotFree fired in beach " +

BeachTypeToStr(BeachMake) + " Spot +

INTTOSTR(index));

190



I

BeachSpot [index] .SpotFree :=TRUE;
Idle := BeachSpot [index] .SpotFree;
ASK SELF TO LogIdleBeachSpotTime(index, SimTimeo, Idle);
ASK BLCP TO GetLighter(index, SELF);

END METHOD;

{ --------------------------------------------------------- }
ASK METHOD CheckSpots(OUT SpotAvail : BOOLEAN;

OUT index : INTEGER);

--------------------------------------------------- }

BEGIN .{
WriteLine("CheckSpots fired in beach " +

BeachTypeToStr(BeachMake));}

SpotAvail := FALSE;

FOR index := 1 TO HIGH(BeachSpot)
IF (BeachSpot[index] .SpotFree)

SpotAvail := TRUE;
BeachSpot [index] .SpotFree := FALSE;
EXIT;

END IF;
END FOR;

END METHOD;

{ ---------------------------------------------- }
ASK METHOD OccupyBeachSpot (IN index : INTEGER);

{ ------------------------------------------------ }

VAR
Idle : BOOLEAN;

191



BEGIN{
WriteLine("Occupy spot fired in beach " +
BeachTypeToStr(BeachMake));}

BeachSpot[index].SpotFree := FALSE;
Idle := BeachSpot[index].SpotFree;

ASK SELF TO LogIdleBeachSpotTime(index, SimTimeo, Idle);

END METHOD;

{ --------------------------------------------------------- }
ASK METHOD ResetBeachStats;

{ --------------------------------------------------------- }

VAR
i : INTEGER;

BEGIN{
WriteLine("ResetBeachStats " + BeachTypeToStr(BeachMake));}

FOR i := 1 TO NumSpots
BeachSpot[i].SpotFree := TRUE;
BeachSpot[ii.TotalIdleTime := 0.0;
BeachSpotIdleTime[i].StartTime := 0.0;
BeachSpotIdleTime[i].EndTime := 0.0;

END FOR;

END METHOD;

END OBJECT;

END MODULE.

192



DEFINITION MODULE FuelCP;

{----------------------------------------
Module Name: FuelCP Last Modified: 20 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines the Fuel Control Point Object
(FuelCPObj) and the WaitingForFuelQueueObj. The
WaitingForFuelQueue is a FIFO group of lighters waiting for
an empty spot for refueling. When a spot opens up the
FuelCPObj pops the first lighter off of the queue and TELLS
it ApproachAndMoorRefuelArea.
-----------------------------------------------------------

FROM GrpMod IMPORT QueueObj;
FROM Global IMPORT SpotType;
FROM Lighter IMPORT LighterObj;
FROM Refuel IMPORT RefuelAreaObj;

TYPE

WaitingForFuelQueueObj = OBJECT(QueueObj[ANYOBJ:
LighterObj])
END OBJECT;

FuelCPObj = OBJECT

ASK METHOD ObjInit;
ASK METHOD GetFuelSpot(IN Lighter : LighterObj);
ASK METHOD GetGasLowLighter(IN index : INTEGER;

IN RefuelArea : RefuelAreaObj);

END OBJECT;

VAR
WaitForFuelQueue : WaitingForFuelQueueObj;
FuelCP : FuelCPObj;

193



END MODULE.

IMPLEMENTATION MODULE FuelCP;

{-------------------------------------------
Module Name: FuelCP Last Modified: 20 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements the Fuel Control Point Object
(FuelCPObj) and the WaitingForFuelQueueObj.
--------------------------------------------------------- I
FROM Lighter IMPORT LighterObj;
FROM SimMod IMPORT SimTime;
FROM Refuel IMPORT RefuelAreaObj;
FROM Builder IMPORT FuelAreaBuilder;
FROM Global IMPORT ALL DestinationType;
FROM WriteLine IMPORT WriteLine;

TYPE

OBJECT FuelCPObj;

{ ------------------------------------------- }
ASK METHOD ObjInit;

{ -------------------------------------------}

BEGIN

NEW(WaitForFuelQueue);

END METHOD;

{ -------------------------------------------
ASK METHOD GetFuelSpot(IN Lighter : LighterObj);

{ -------------------------------------------

VAR

194



SpotAvail : BOOLEAN;
index : INTEGER;
RefuelArea : RefuelAreaObj;
Dest : DestinationType;

BEGIN{
WriteLine("GetFuelSpot Fired " + " LighterID = " + ASK
Lighter LighterID);}

SpotAvail := FALSE;
Dest := Fuel;

RefuelArea := ASK FuelAreaBuilder First();
WHILE RefuelArea <> NILOBJ

ASK RefuelArea TO CheckFuelSpots(SpotAvail, index);

IF SpotAvail
TELL Lighter TO ApproachAndMoor(index, Dest,

RefuelArea);
ASK RefuelArea TO OccupySpot(index);
RETURN;

END IF;

RefuelArea := ASK FuelAreaBuilder Next(RefuelArea);
END WHILE;

IF (NOT SpotAvail
ASK WaitForFuelQueue TO Add(Lighter);

END IF;

END METHOD;

{ -------------------------------------------
ASK METHOD GetGasLowLighter(IN index : INTEGER;

IN RefuelArea : RefuelAreaObj);
{-------------------------------------------}

195



VAR
Lighter : LighterObj;
Dest : DestinationType;

BEGIN{
WriteLine("GetGasLowLighter Fired ");

Dest := Fuel;

Lighter := ASK WaitForFuelQueue Firsto;

IF Lighter <> NILOBJ

ASK WaitForFuelQueue TO RemoveThis(Lighter);

TELL Lighter TO ApproachAndMoor(index, Dest, RefuelArea);

END IF;

END METHOD;

END OBJECT;

END MODULE.

DEFINITION MODULE Refuel;

{-------------------------------------------
Module Name: RefuelArea Last Modified: 20 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines The RefuelArea object.
--------------------------------------------------

196



FROM Global IMPORT RefuelSpotRecType;
FROM Lighter IMPORT LighterObj;

TYPE

RefuelSpotArrayType = ARRAY INTEGER OF RefuelSpotRecType;

RefuelAreaObj = OBJECT

AreaName : STRING;
NumRefuelSpots : INTEGER;
DistFromRefuelToShip : REAL;
RefuelSpot : RefuelSpotArrayType;
PumpRate : REAL;

ASK METHOD ObjInit;
ASK 1-:THOD GetRefuelAreaSetup(IN Name : STRING;

IN Numl : INTEGER;
IN Num2 : REAL;
IN Array

RefuelSpotArrayType;
IN Num3 : REAL);

ASK METHOD SetSpotFree(IN index : INTEGER);
ASK METHOD CheckFuelSpots (OUT SpotAvail : BOOLEAN;

OUT index : INTEGER);
ASK METHOD OccupyRefuelSpot(IN index : INTEGER);

END OBJECT;

VAR
RefuelArea : RefuelAreaObj;

END MODULE.

IMPLEMENTATION MODULE Refuel;

197



{--
Module Name: RefuelArea Last Modified: 20 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements The RefuelArea object.
--------- -------------------------------------------------.

FROM FuelCP IMPORT FuelCP;
FROM Lighter IMPORT LighterObj;
FROM WriteLine IMPORT WriteLine;

OBJECT RefuelAreaObj;

{ --------------------------------------------------------- }
ASK METHOD ObjInit;
{ --------------------------------------------------------- }

BEGIN

END METHOD;

{ --------------------------------------------------------- }
ASK METHOD GetRefuelAreaSetup(IN Name : STRING;

IN Numl : INTEGER;
IN Num2 : REAL;
IN Array

RefuelSpotArrayType;
IN Num3 : REAL);

{--------------------------------------------------------}

BEGIN

198



AreaName :=Name;

{
WriteLine("//GetRefuelAreaSetup// AreaName = " + AreaName);
}

NumRefuelSpots :=Numl;
DistFromRefuelToShip :=Num2;

NEW(RefuelSpot, 1..NumRefuelSpots);

RefuelSpot :=Array;

PumpRate :=Num3;

END METHOD;

{ ----------------------------------------------------------
ASK METHOD SetSpotFree(IN index : INTEGER);

{ ----------------------------------------------------------

BEGIN

{
WriteLine("SetSpotFree Fired in RefuelArea ");

I
RefuelSpot[index].RefuelSpotFree := TRUE;
ASK FuelCP TO GetGasLowLighter(index, SELF);

END METHOD;

199



{ ----------------------------------------------------- -- --
ASK METHOD CheckFuelSpots(OUT SpotAvail : BOOLEAN;

OUT index : INTEGER);
{---------------------------------------------------------

BEGIN

{
WriteLine("CheckFuelSpots fired in RefuelArea ");

I

SpotAvail FALSE;

FOR index 1 TO HIGH(RefuelSpot)
IF (RefuelSpot[index].RefuelSpotFree)

SpotAvail := TRUE;
RETURN;

END IF;
END FOR;

END METHOD;

{ -------------------------------------------
ASK METHOD OccupyRefuelSpot(IN index : INTEGER);

{ -------------------------------------------
BEGIN

{
WriteLine("OccupySpot Fired in RefuelArea spot " +

INTTOSTR(index));}

RefuelSpot[index].RefuelSpotFree := FALSE;

END METHOD;

END OBJECT;

END MODULE.

200



DEFINITION MODULE Convert;

{ --------------------------------------------------
Module Name: Convert Last Modified: 20 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines Procedures for converting enumerated
types to/from STRING for input/output.
------------------------------------------------------}
FROM Global IMPORT SpotType;
FROM Beach IMPORT BeachType;
FROM Lighter IMPORT LighterNameType;
FROM Ship IMPORT ShipTypeType;

PROCEDURE SpotTypeToStr(IN Spot : SpotType) : STRING;
PROCEDURE StrToSpotType(IN Str: STRING) : SpotType;

PROCEDURE BeachTypeToStr(IN BchName : BeachType) : STRING;
PROCEDURE StrToBeachType(IN Str : STRING) : BeachType;

PROCEDURE LighterNameTypeToStr(IN LighterName :
LighterNameType) : STRING;

PROCEDURE StrToLighterNameType(IN Str : STRING) :
LighterNameType;

PROCEDURE ShipTypeToStr(IN ShipType : ShipTypeType)
STRING;

PROCEDURE StrToShipType(IN Str : STRING) : ShipTypeType;

PROCEDURE BooleanToStr(IN Boolean : bOOLEAN) : STRING;
PROCEDURE StrToBoolean(IN Str : STRING) : BOOLEAN;

END MODULE.

IMPLEMENTATION MODULE Convert;

201



-----------------------------------------------------------
Module Name: Convert Last Modified: 20 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements Procedures for converting
enumerated types to/from STRING for input/output.
----------------------------------------------------------.

FROM Global IMPORT ALL SpotType;
FROM Beach IMPORT ALL BeachType;
FROM Lighter IMPORT ALL LighterNameType;
FROM Ship IMPORT ALL ShipTypeType;
FROM WriteLine IMPORT WriteLine;

{ --------------------------------------------------------- }
PROCEDURE SpotTypeToStr(IN Spot : SpotType) : STRING;

f --------------------------------------------------------- }

VAR
Str : STRING;

BEGIN

CASE Spot
WHEN LCU : Str := "LCU";
WHEN CWF : Str := "CWF";
WHEN LoLo : Str := "LoLo";
OTHERWISE

Str := "Other...?";
END CASE;

RETURN(Str);

END PROCEDURE;

202



I --- ---------------------------------------------------- - }
PROCEDURE StrToSpotType(IN Str : STRING) : SpotType;
f --------------------------------------------------------- }

VAR
Spot : SpotType;

BEGIN

WriteLine("Converting" + Str);

CASE Str
WHEN "LCU" : Spot LCU;
WHEN "Lcu" : Spot LCU;
WHEN "ICU" : Spot LCU;
WHEN "CWF" : Spot CWF;
WHEN "Cwf" : Spot CWF;
WHEN "cwf" : Spot CWF;
WHEN "LoLo" : Spot LoLo;
WHEN "Lolo" : Spot LoLo;
WHEN "iol" : Spot LoLo;
WHEN "LOLO" : Spot LoLo;

END CASE;

RETURN (Spot)

END PROCEDURE;

{ --------------------------------------------------------- }
PROCEDURE BeachTypeToStr(IN BchName : BeachType) : STRING;

{ --------------------------------------------------------- }

VAR
Str: STRING;

BEGIN

CASE BchName

203



WHEN BareBeach : Str := "BareBeach";
WHEN FloatingCWPier : Str := "FloatingCWPier";
WHEN ELCAS : Str := "ELCAS";
OTHERWISE

Str := "Other...?";
END CASE;

RETURN (Str);

END PROCEDURE;

{ ------------------------------------------- }
PROCEDURE StrToBeachType(IN Str : STRING) : BeachType;

I --------------------------------------------------------- }

VAR
BeachName : BeachType;

BEGIN

WriteLine("Converting" + Str);

CASE Str
WHEN "BareBeach" : BeachName := BareBeach;
WHEN "FloatingCWPier" : BeachName := FloatingCWPier;
WHEN "ELCAS" : BeachName := ELCAS;

END CASE;

RETURN (BeachName);

END PROCEDURE;

{ ------------------------------------------- }
PROCEDURE LighterNameTypeToStr (IN LighterName :

LighterNameType) : STRING;

{--------------------------------------------------------}
VAR

204



Str : STRING;

BEGIN

CASE LighterName
WHEN LCU1466 : Str "LCU1466";
WHEN LCU1610 : Str "LCU1610";

WHEN LCU2000 : Str "LCU2000";
WHEN CWF11 : Str "CWF11;
WHEN CWF21 : Str "CWF21";

WHEN CWF31 : Str "CWF31";

WHEN LSV : Str "LSV";
OTHERWISE

Str := "Other...?";
END CASE;

RETURN(Str);

END PROCEDURE;

{ ----------------------------------------------------------
PROCEDURE StrToLighterNameType(IN Str : STRING)

LighterNameType;

{ ----------------------------------------------------------

VAR

LighterName : LighterNameType;

BEGIN

WriteLine("Converting" + Str);

CASE Str
WHEN "LCU1466" : LighterName LCU1466;

WHEN "LCU1610" : LighterName LCU1610;
WHEN "LCU2000" : LighterName LCU2000;

WHEN "CWF11" : LighterName CWF11;

WHEN "CWF21" : LighterName CWF21;
WHEN "CWF31" : LighterName CWF31;

WHEN "LSV" : LighterName LSV;

205



END CASE;

RETURN(LighterName);

END PROCEDURE;

{ ----------------------------------------------------------
PROCEDURE ShipTypeToStr(IN ShipType : ShipTypeType)
STRING;

{ --------------------------------------------------------- }

VAR
Str : STRING;

BEGIN

CASE ShipType
WHEN SSR : Str :"SSR";
WHEN NSSR : Str "NSSR";

OTHERWISE
Str := "Other...?";

END CASE;

RETURN(Str);

END PROCEDURE;

{ ----------------------------------------------------------
PROCEDURE StrToShipType(IN Str : STRING) : ShipTypeType;

I ----------------------------------------------------------

VAR
ShipType : ShipTypeType;

BEGIN

206



WriteLine("Converting" + Str);

CASE Str
WHEN "SSR" ShipType SSR;
WHEN RNSSR" ShipType NSSR;

END CASE;

RETURN(ShipType);

END PROCEDURE;

{ ------------------------------------------- }
PROCEDURE BooleanToStr(IN Boolean : BOOLEAN) : STRING;

{ ------------------------------------------- }

VAR
Str : STRING;

BEGIN

CASE Boolean
WHEN TRUE Str "TRUE";
WHEN FALSE Str "FALSE";

OTHERWISE
Str := "Other...?";

END CASE;

RETURN (Str);

END PROCEDURE;

207



-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -- --
PROCEDURE StrToBoolean(IN Str : STRING) : BOOLEAN;
I --------------------------------------------------------- }

VAR
Boolean : BOOLEAN;

BEGIN

WriteLine("Converting" + Str);

CASE Str
WHEN "TRUE" : Boolean TRUE;
WHEN "FALSE" Boolean FALSE;

END CASE;

RETURN(Boolean);

END PROCEDURE;

END MODULE.

DEFINITION MODULE Stats;

{-------------------------------------------
Module Name: Stats Last Modified: 21 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines the Statistics Object.
----------------------------------------------------------}
FROM Ship IMPORT RoRoObj;

TYPE

208



Spot IdleTimeRecType = RECORD
Place STRING;
Time REAL;

END RECORD;

GrandMeanBeachSpotldleTimeArrayType =ARRAY INTEGER OF
Spot IdleRecType;

StatsObj = OBJECT;

Reps :INTEGER;
NumBeaches :INTEGER;
MeanTPut :REAL;
MeanLCUinBQ :REAL;
MeanLSVinBQ :REAL;
MeanCWFinBQ :REAL;

GrandMeanLCUinBQ :REAL;
GrandMeanLSVinBQ :REAL;
GrandMeanCWFinBQ :REAL;
GrandMeanLCUinSQ :REAL;
GrandMeanLSVinSQ :REAL;
GrandMeanCWFinSQ :REAL;

MeanLCUinSQ :REAL;
MeanLSVinSQ :REAL;
MeanCWFinSQ :REAL;

MeanShipLCtJSpotldle :REAL;
MeanShipCWFSpotldle :REAL;
MeanShipLoLoSpotldle :REAL;

GrandmeanShipLCUSpotldle :REAL;
GrandMeanShipCWFSpotldle :REAL;
GrandmeanShipLoLoSpotldle :REAL;

MeaxlBeachSpotldle :REAL;
GrandMeanBeachSpotldleTime

GrandMeanBeachSpot IdleTimeArrayType;

209



ASK METHOD ObjInit;
ASK METHOD DumpStats(IN OffloadTime : REAL);

END OBJECT;

VAR

Stats : StatsObj;

END MODULE.

IMPLEMENTATION MODULE Stats;

{-------------------------------------------
Module Name: Stats Last Modified: 21 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements the Statistics Object.
---------------------------------------------------------}
FROM Lighter IMPORT LighterObj, ALL LighterNameType;
FROM SLCP IMPORT WaitForShipQueue;
FROM Ship IMPORT RoRoObj;
FROM Beach IMPORT BeachObj, ALL BeachType;
FROM Builder IMPORT BeachBuilder, LighterBuilder,

ShipBuilder;
FROM RepMngr IMPORT RepManager;
FROM Global IMPORT ALL SpotType;
FROM Convert IMPORT BeachTypeToStr;
FROM WriteLine IMPORT WriteLine, WriteLineA, WriteLineB,

WriteLineC, WriteLineD;

210



TYPE

OBJECT StatsObj;

S- -------------------------------------------
ASK METHOD ObjInit;

{ ------------------------------------------- }

VAR

k : INTEGER;
Beach : BeachObj;
Rec : SpotIdleRecType;

BEGIN

Reps := 0;
MeanTPut := 0.0;

GrandMeanLCUinBQ 0.0;
GrandMeanLSVinBQ 0.0;
GrandMeanCWFinBQ 0.0;
GrandMeanLCUinSQ 0.0;
GrandMeanLSVinSQ 0.0;
GrandMeanCWFinSQ 0.0;

GrandMeanShipLCUSpotIdle 0.0;
GrandMeanShipCWFSpotIdle 0.0;
GrandMeanShipLoLoSpotIdle 0.0;

NumBeaches := ASK BeachBuilder numberIn;
NEW(GrandMeanBeachSpotIdleTime, B.. NumBeaches);

k :=0;
Beach := ASK BeachBuilder First();
WHILE Beach <> NILOBJ

k :=k + 1;

211



NEW(Rec);
Rec.Place := ASK Beach BeachID;
Rec.Time := 0.0;
GrandMeanBeachSpotIdleTime[k] := Rec;

Beach := ASK BeachBuilder Next(Beach);
END WHILE;

END METHOD;

{ -------------------------------------------
ASK METHOD DumpStats(IN OffloadTime : REAL);

--------------------------------------------------------- }

VAR

Lighter : LighterObj;
JunkLighter : LighterObj;
Ship : RoRoObj;
Beach : BeachObj;
i : INTEGER;
LighterType : LighterNameType;
NameOfShip : STRING;
TypeOfBeach : BeachType;
IDOfBeach : STRING;

CountLCU : INTEGER;
CountLSV : INTEGER;
CountCWF : INTEGER;
CountLoLo : INTEGER;

TimeLCUinBQ : REAL;
TimeLSVinBQ : REAL;
TimeCWFinBQ : REAL;

TimeLCUinSQ : REAL;
TimeLSVinSQ : REAL;
TimeCWFinSQ : REAL;

212



ShipLCUSpotldle :REAL;
ShipCWFSpotldle :REAL;
ShipLoLoSpot Idle :REAL;

BeachSpotIdle :REAL;

BEGIN

WriteLine("Entering Stats mod, DumpStats method.
Of floadTime = " +

REALTOSTR(OffloadTime));

CountLCU :O
CountLSV :O
CountCWF :O
CountLoLo :=0;

TimeLCUinBQ 0.0;
TimeLSVinBQ :=0.0;
TimeCW~inBQ 0.0;

TimeLCUinSQ :=0.0;
TimeLSVinSQ 0.0;
TiMeCWFinSQ 0.0;

MeanLCUinBQ 0.0;
MeanLSVinBQ 0.0;
MeanCWFinBQ :=0.0;

MeanLCUinSQ 0.0;
MeanLSVinSQ 0.0;
MeanCWFinSQ 0.0;

ShipLCUSpotl.c41'e 0.0;
ShipCWFSpotIe := 0.0;
ShipLoLoSpotldle 0.0;

MeanShipLCUSpotldle 0.0;
MeanShipCWFSpotldle 0.0;

213



MeanShipLoLoSpotldle :=0.0;

BeachSpotIdle :=0.0;
MeanBeachSpotldle :=0.0;

Reps :=Reps + 1;
MeanTPut :=MeanTPut + Of floadTime;

Lighter :=ASK LighterBuilder Firsto;
WHILE Lighter <> NILOBJ

LighterType :=ASK Lighter LighterTypeName;

IF ( LighterType = LCU1466) OR (LighterType
LCU161O) OR (LighterType = LCU2000)

TimeLCUinSQ TimeLCUinSQ + ASK Lighter
TimelnShipQueue;

TimeLCUinBQ =TimeLCUinBQ + ASK Lighter
Timeln~eachQueue;

CountLCU :=CountLCtJ + 1;

ELSIF (ASK Lighter LighterTypeName =LSV)

TiMeLSVinSQ TimeLSVinSQ + ASK Lighter
Time InShipQueue;

TimeLSVinBQ :=TimeLSVinBQ + ASK Lighter
Time InBeachQueue;

CountLSV CountLSV + 1;

ELSE
TimeCWFinSQ :=TimeCWFinSQ + ASK Lighter

TimelnShipQueue;
TimeCWFinBQ =TimeCWFinEQ + ASK Lighter

TimelnBeachQueue;
CountCWF :=CountCWF + 1;

END IF;

Lighter := ASK LighterBuilder Next (Lighter);

214



END WHILE;

MeanLCUinBQ =TiMeLCUinBQ /FLOAT (CountLCU);
MeanLSVinBQ =TiMeLSVinBQ IFLOAT (CountLSV);
MeanCWFinBQ =TimeCWFiflBQ /FLOAT (CoufltCWF);

MeanLCUinSQ =TimeLCUinSQ IFLOAT (CountLCU);
MeanLSVinSQ =TimeLSViflSQ /FLOAT (CountLSV);
MeanCWFinSQ =TimeCWFinSQ /FLOAT (CountCWF);

GrandMeanLCUinBQ =GrandMeanLCUinBQ + MeanLCUinBQ;
GrandMeanLSVinBQ =GrandMeanLSVinBQ + MeanLSVinBQ;
GrandMeanCWFinBQ =GrandMeanCWFinEQ + MeanCWFinBQ;
GrandMeanLCUinSQ =GrandMeanLCUf..nSQ + MeanLCUinSQ;
GrandMeanLSVinSQ =GrandMeanLSVi4nSQ + MeanLSVir1SQ;
GrandMeanCWFinSQ =GrandMeanCWFiflSQ + MeanCWFinSQ;

CountLCU :O
CountCWF :O
CountLoLo :O

{ Determine ship spot stats}

IF ( Reps = 1)

WriteLineC("")
WriteLineC(" ;
WriteLineC( ----------Idle Ship Spot TimeStats -------------

WriteLineC(" )
WriteLineC("")
WriteLineC("Rep# Ship Name Mean LCtJ Mean CWF

Mean LoLo");

END IF;

Ship :=ASK ShipBuilder Firsto;
WHILE Ship <c> NILOBJ

215



NaMeOfShip :=ASK Ship ShipName;

FOR 1 1 TO (ASK Ship NkumSpots)
IF (ASK Ship ShipSpot[i].SpotClassification = LCU)

ShipLCUSpotldle := ASK Ship
ShipSpot Li].TotalidleTime;

CountLCU CountLSV + 3,;

ELSIF( ASK Ship ShipSpot~i].SpotClassification = CWF)
ShipCWFSpotldle :=ASK Ship

ShipSpot [ii .TotalldleTime;
CountCWF CountCWF + 1;

ELSE
ShipLoLoSpotldle :=ASK Ship

ShipSpot [ii .TotalldleTime;
CountLoLo :=CountLoLo + 1;

END IF;

END FOR;

MeanShipLCUSpot Idle =ShipLCUSpot Idle /FLOAT (CountLCU);
MeanShipCWFSpotldle =ShipCWFSpot Idle / FLOAT (CountCWF);
MeanShipLoLoSpot Idle =ShipLoLoSpot Idle / FLOAT (CountLoLo);

GrandMeanShipLCUSpotldle =GrandMeanShipLCUSpotldle

+ MeanShipLCUSpot Idle;
GrandMeanShipCWFSpotldle =GrandMeanShipCWFSpotldle

+ MeanShipCWFSpot Idle;
GrandMeanShipLoLoSpotldle =GrandMeanShipLoLoSpotldle

+ MeanShipLoLoSpot Idle;

WriteLineC(INTTOSTR(Reps) + " + NameOf Ship +
+ REALTOSTR (meanShipLCtjSpot Idle) +
+ REALTOSTR(MeanShipCWFSpotldle) +
+ REALTOSTR (MeanShipLoLoSpot Idle));

216



Ship :=ASK ShipBUilder Next(Ship);

END WHILE;

I Determine Beach spot stats

IF ( Reps = 1)

WriteLineD(" )
WriteLineD(" )
WriteLineD( -----------Idle Beach Spot TimeStats------
WriteLineD(" )
WriteLineD(" )

WriteLineD("Rep# Beach Make Beach ID Mean
Idle Time");

END IF;

k :=0;
Beach :=ASK BeachBuilder Firsto;
WHILE Beach <> NILOBJ

k :=k + 1;
TypeOf Beach := ASK Beach 1Peachmake;
IDOfBeach := ASK Beach BeachlD;

FOR i :=1 TO (ASK Beach NuinSpots)

BeachSpotIdle := BeachSpotIdle + ASK Beach
BeachSpot [ii .TotalldleTime;

END FOR;

MeanBeachSpotldle := BeachSpotIdle IFLOAT(ASK Beach
NuinSpots);

WriteLineD(INTTOSTR(Reps) + " +

BeachTypeToStr(TypeOfBeach) + " +

217



IDOfBeach + " +

REALTOSTR(MeanBeachSpotldle));

GrandMeanBeachSpotldleTimne RI.Time :=
Grandz~eanBeachSpotldleTime~k] .Time + MeanBeachSpotldle;

BeachSpotIdle := 0.0;
Beach := ASK BeachBuilder Next (Beach);

END WHILE;

IF ( Reps = 1)

WriteLineA(" ;

WriteLineA(" )

WriteLineA(w ---------------Throughput Stats ----------------i)

WriteLineA(" )
WriteLineA(w )
WriteLineA("Rep# Total Time");

END IF;

WriteLineA(INTTOSTR(Reps) + " +
REALTOSTR(OffloadTime));

IF ( Reps = 1I

WriteLineB(" )

WriteLineB(" i)

WriteLineB( -------------- Time in Queue Stats --------------K);
WriteLineB(" ;
WriteLineB(" )

WriteLineB("Rep# Mean LCU Mean LSV Mean
CWF Mean LCU Mean LSV Mean CWF");
WriteLineB(" Ship Ship Ship

Beach Beach Beach");

END IF;

218



WriteLineB(INTTOSTR(Reps) + " " +
REALTOSTR (MeanLCUinSQ) +

" + REALTOSTR(MeanLSVinSQ) + " " +

REALTOSTR (MeanCWFinSQ) +
"+ REALTOSTR(MeanLCUinBQ) + " " +

REALTOSTR (MeanLSVinBQ) +
"+ REALTOSTR (MeanCWFinBQ));

IF ( ASK RepManager OutputToScreen

OUTPUT;
OUTPUT;
OUTPUT(" ----------------Throughput Stats ------------------

OUTPUT;
OUTPUT;
END IF;

OUTPUT;
OUTPUT("Rep# Total Time");
OUTPUT(INTTOSTR(Reps) + " " + REALTOSTR(OffloadTime));
OUTPUT;
OUTPUT;

{ If more than one ship, must cycle through list to
determine if LastLoad = T for each. If true, and RepMngr
is Done, then simulation is truely finished and Stats can
be dumped. If any ships still have vehicles, then only the
current ship can be reset and must ask SLCP to GetLighter.
GetLighter must be modified to cycle through all ships
in list when CheckSpots is fired. }

IF (ASK RepManager Done)

WriteLineA(" ");

WriteLineA(" Total number of reps completed = " +

INTTOSTR(Reps));

219



WriteLineB(" ");
WriteLineB(I Total number of reps completed = I +

INTTOSTR(Reps));
writeLineC(w 0);
WriteLineC(" Total number of reps completed = " +

INTTOSTR(Reps));
WriteLineD(" ");
WriteLineD(" Total number of reps completed = " +

INTTOSTR(Reps));
writeLineD(" ");

MeanTPut := MeanTPut / FLOAT (Reps);

GrandMeanLCUinBQ =GrandMeanLCUinBQ IFLOAT (Reps);
GrandMeanLSVinBQ =GrandMeanLSVinBQ IFLOAT (Reps);
GrandMeanCWFinBQ =GrandmeanCWFinBQ /FLOAT (Reps);
GrandMeanLCUinSQ =GrandMeanLCUinSQ /FLOAT (Reps);
GrandMeanLSVinSQ =GrandMeanLSVinSQ IFLOAT (Reps);
GrandMeanCWFinSQ =GrandMeanCWFinSQ /FLOAT (Reps);

GrandMeanShipLCUSpotldle =GrandMeanShipLCUSpotldle

/ FLOAT (Reps);

GrandMeanShipCWFSpotldle =GrandMeanShipCWFSpotldle

/ FLOAT (Reps);
GrandMeanShipLoLoSpotldle =GrandMeanShipLoLoSpotldle

I FLOAT(Reps);

FOR i := 1 TO Num~Beaches
GrandMeanBeachSpotldleTime [ii Time
GrandMeanBeachSpotldleTime [i] Time IFLOAT (Reps);

WriteLineD('Grand Mean For Beach Spot Idle Time ="
+ REALTOSTR (GrandMeanBeachSpot IdleTime Ii] Time)
* " For Beach ID =-

* GrandMeanBeachSpotldleTime [ii Place);

END FOR;

WriteLineA ("Mean Throughput Time ="+ REALTOSTR (MeanTPut));

220



WriteLineB("Grand Mean For LCU in Beach Queue =

+ REALTOSTR (GrandMeanLCUinBQ));
WriteLineB("Grand Mean For LSV in Beach Queue =

+ REALTOSTR (Grand~eanLSVinBQ));
WriteLineB("Grand mean For CWF in Beach Queue =

+ REALTOSTR (GrandMeanCWFinBQ));
WriteLineB("Grand Mean For LCU in Ship Queue =

+ REALTOSTR (GrandMeanLCUinSQ));
writeLineB("Grand mean For LSV in Ship Queue =

+ REALTOSTR (GrandMeanLSvinSQ));
WriteLineB("Grand Mean For CWF in Ship Queue =

+ REALTOSTR (GrandMeanCWFinSQ));

WriteLineC("Grand Mean For LCU Ship Spot Idle Time =

+ REALTOSTR (GrandMeanShipLCUSpotldle));
WriteLineC("Grand Mean For CWF Ship Spot Idle Time ="

+ REALTOSTR (GrandMeanShipCWFSpotldle));
writeLineC("Grand Mean For LoLo, Ship Spot Idle Time

+ REALTOSTR (GrandMeanShipLoLoSpotldle));

OUTPUT ( "Mean Throughput Time ="+ REAIJTOSTR (MeanTPut));
OUTPUT;
OUTPUT;

ELSE

Of floadTime :=0.0;

{Reset all lighters}

Lighter := ASK LighterBuilder Firsto;
WHILE Lighter <> NILOBJ

ASK Lighter TO ResetLighterStats;

Lighter :=ASK LighterBuilder Next(Lighter);
END WHILE;

(Reset the RoRo}

221



Ship := ASK ShipBuilder Firsto;
WHILE Ship <> NILOBJ

ASK Ship TO ResetShipStats;

Ship := ASK ShipBuilder Next(Ship);
END WHILE;

ASK SLCP TO ResetSLCP;

{Reset all beaches}

Beach := ASK BeachBuilder Firsto;
WHILE Beach <> NILOBJ

ASK Beach TO ResetBeachStats;
Beach := ASK BeachBuilder Next(Beach);
END WHILE;

END IF;

END METHOD;

END OBJECT;

END MODULE.
DEFINITION MODULE WriteLine;

{-------------------------------------------
Module Name: WriteLine Last Modified: 20 Jul 93
Author: M. Bailey Modified by: J. S. Noel

Prof. NPGS

DESCRIPTION: Defines the WriteLine procedure for output to
the file "Sim.Out".

--------------------------------------------------- }

PROCEDURE WriteLine(IN String : STRING);
PROCEDURE WriteLineA(IN String : STRING);
PROCEDURE WriteLineB(IN String : STRING);

222



PROCEDURE WriteLineC(IN String : STRING);
PROCEDURE WriteLineD(IN String : STRING);

END MODULE.

IMPLEMENTATION MODULE WriteLine;

{ ----------------------------------------------------------
Module Name: WriteLine Last Modified: 20 Jul 93
Author: M. Bailey Modified by: J. S. Noel

Prof. NPGS

DESCRIPTION: Implements the WriteLine procedure for output
to the file "Sim.Out".

----.---..--------------------------------------

FROM IOMod IMPORT FileUseType(Output);
FROM IOMod IMPORT StreamObj;
FROM UtilMod IMPORT DateTime;

VAR
DT : STRING;
TraceStream : StreamObj;
TraceStreamA : StreamObj;
TraceStreamB : StreamObj;
TraceStreamC : StreamObj;
TraceStreamD : StreamObj;

{ --------------------------------------------------------- }
PROCEDURE WriteLine(IN String : STRING);

{ --------------------------------------------------------- }

BEGIN
IF (TraceStream = NILOBJ)

NEW(TraceStream);
ASK TraceStream TO Open("sim.out", Output);
DateTime(DT);

223



ASK TraceStream TO WriteString(DT);
ASK TraceStream TO WriteLn;
ASK TraceStream TO WriteLn;

END IF;

ASK TraceStream TO WriteString(String);
ASK TraceStream TO WriteLn;

END PROCEDURE;

{ ----------------------------------------------------------
PROCEDURE WriteLineA(IN String : STRING);

I ----------------------------------------------------------

BEGIN
IF (TraceStreamA = NILOBJ)

NEW(TraceStreamA);
ASK TraceStreamA TO Open("Total.out", Output);
DateTime(DT);
ASK TraceStreamA TO WriteString(DT);
ASK TraceStreamA TO WriteLn;
ASK TraceStreamA TO WriteLn;

END IF;

ASK TraceStreamA TO WriteString(String);
ASK TraceStreamA TO WriteLn;

END PROCEDURE;

{ --------------------------------------------------------- }
PROCEDURE WriteLineB(IN String : STRING);

{ ----------------------------------------------------------

BEGIN
IF (TraceStreamB = NILOBJ)

NEW(TraceStreamB);
ASK TraceStreamB TO Open("Queue.out", Output);
DateTime(DT);

224



ASK TraceStreamB TO WriteString(DT);
ASK TraceStreamB TO WriteLn;
ASK TraceStreamB TO WriteLn;

END IF;

ASK TraceStreamB TO WriteString(String);
ASK TraceStreamB TO WriteLn;

END PROCEDURE;

{ ----------------------------------------------------------
PROCEDURE WriteLineC(IN String : STRING);

f --------------------------------------------------------- }

BEGIN
IF (TraceStreamC = NILOBJ)

NEW(TraceStreamC);
ASK TraceStreamC TO Open("SSpot.out", Output);
DateTime(DT);
ASK TraceStreamC TO WriteString(DT);
ASK TraceStreamC TO WriteLn;
ASK TraceStreamC TO WriteLn;

END IF;

ASK TraceStreamC TO WriteString(String);
ASK TraceStreamC TO WriteLn;

END PROCEDURE;

{ -------------------------------------------------
PROCEDURE WriteLineD(IN String : STRING);

{ --------------------------------------------------------- }

BEGIN
IF (TraceStreamD = NILOBJ)

NEW(TraceStreamD);
ASK TraceStreamD TO Open("BSpot.out", Output);
DateTime(DT);

225



ASK TraceStreamD TO WriteString(DT);
ASK TraceStreaxnD TO WriteLn;
ASK TraceStreamD TO WriteLn;

END I F;

ASK TraceStreainD TO WriteString(String);
ASK TraceStreaxnD TO WriteLn;

END PROCEDURE;

END MODULE.

226



APPENDIX D SAMPLE INPUT FILBS

-BchName.dat ................. -----

4 # Number of Beaches in this file/simulation scenario

SouthBeach -> dummy \\ # Name of Beach. Must be of STRING.
Admin -> dummy \\ # Name of Beach. Must be of STRING.
Army -> dummy \\ # Name of Beach. Must be of STRING.
Navy -> dummy \\ # Name of Beach. Must be of STRING.

This file contains the names of the four beaches in the
validation scenario. The format is as follows:

NumBeaches ... The number of beach names to be read.

BeachName -> ... Name of beach.

The format is the same for all input files. The first
line in the file contains the number of records to be read.
The first line of each record contains the record
identifier, such as the beach name, followed by the symbol
" -> ". The lines that follow contain the rest of the
record. The end of a record is indicated by a double slash
" \\ ". Comments are preceded by a " # " symbol.

-------------------------- BchType.dat-----------------------

4 # Number of Beach records in this file.

SouthBeach -> # Beach ID. Must be STRING.
BareBeach # Type of Beach. Must be of BeachType.
2 # Number of Spots. Must be INTEGER.

227



LCU # Spot Type. Must be SpotType.
T # Spot Free. Must be BOOLEAN.

LCU # Spot Type. Must be SpotType.
T # Spot Free. Must be BOOLEAN.

6.0 # Distance from SLCP. Must be REAL.
6.0 # Distance from RefuelArea. Must be REAL.

Admin -> # Beach ID. Must be STRING.
FloatingCWPier # Type of Beach. Must be of BeachType.
1 # Number of Spots. Must be INTEGER.

LCU # Spot Type. Must be SpotType.
T # Spot Free. Must be BOOLEAN.

6.0 # Distance from SLCP. Must be REAL.
6.0 # Distance from RefuelArea. Must be REAL.

Army -> # Beach ID. Must be STRING.
FloatingCWPier # Type of Beach. Must be of BeachType.
2 # Number of Spots. Must be INTEGER.

LCU # Spot Type. Must be SpotType.
T # Spot Free. Must be BOOLEAN.

LCU # Spot Type. Must be SpotType.
T # Spot Free. Must be BOOLEAN.

6.0 # Distance from SLCP. Must be REAL.
6.0 # Distance from RefuelArea. Must be REAL.

Navy -> # Beach ID. Must be STRING.
FloatingCWPier # Type of Beach. Must be of BeachType.
1 # Number of Spots. Must be INTEGER.

LCU # Spot Type. Must be SpotType.
T # Spot Free. Must be BOOLEAN.

228



6.0 # Distance from SLCP. Must be REAL.
6.0 # Distance from RefuelArea. Must be REAL.

---------- ----------------- LtName.dat-----------------------

12 # Number of Lighters in this file/simulation scenario

ALFA -> dummy \\# ID of Lighter. Must be a unique STRING.
BRAVO -> dummy \\# ID of Lighter. Must be a unique STRING.
CHARLIE -> dummy \\# ID of Lighter. Must be a unique STRING.
DELTA -> dummy \\# ID of Lighter. Must be a unique STRING.
ECHO -> dummy \\# ID of Lighter. Must be a unique STRING.
FOXTROT -> dummy \\# ID of Lighter. Must be a unique STRING.
GOLF -> dummy \\# ID of Lighter. Must be a unique STRING.
HOTEL -> dummy \\# ID of Lighter. Must be a unique STRING.
INDIA -> dummy \\# ID of Lighter. Must be a unique STRING.
JULIET -> dummy \\# ID of Lighter. Must be a unique STRING.
KILO -> dummy \\# ID of Lighter. Must be a unique STRING.
LIMA -> dummy \\# ID of Lighter. Must be a unique STRING.

---------- ----------------- LtType.dat-----------------------

12 # Number of Lighter records in this file.

ALFA -> # ID of Lighter. Must be a unique STRING type.
LCU2000 # Type of Lighter. Must be of LighterNameType.
LCU # Spot Type Required. Must be SpotType.
12.0 # Max Speed. Must be REAL.
10.0 # Full Load Speed. Must be REAL.
10 # Max Load in # of vehicles. Must be INTEGER.
92000.0 # Fuel Capacity in gallons. Must be REAL.
41.6 # Burn Rate in Gallons per hour. Must be REAL.
0.25 # Min Fuel expressed in percent. Must be REAL.

229



BRAVO -> # ID of Lighter. Must be a unique STRING type.
LCU2000 # Type of Lighter. Must be of LighterNameType.
LCU # Spot Type Required. Must be SpotType.
12.0 # Max Speed. Must be REAL.
10.0 # Full Load Speed. Must be REAL.
10 # Max Load in # of vehicles. Must be INTEGER.
92000.0 # Fuel Capacity in gallons. Must be REAL.
41.6 # Burn Rate in Gallons per hour. Must be REAL.
0.25 # Min Fuel expressed in percent. Must be REAL.

CHARLIE -> # ID of Lighter. Must be a unique STRING type.
LCU2000 # Type of Lighter. Must be of LighterNameType.
LCU # Spot Type Required. Must be SpotType.
12.0 # Max Speed. Must be REAL.
10.0 # Full Load Speed. Must be REAL.
10 # Max Load in # of vehicles. Must be INTEGER.
92000.0 # Fuel Capacity in gallons. Must be REAL.
41.6 # Burn Rate in Gallons per hour. Must be REAL.
0.25 # Min Fuel expressed in percent. Must be REAL.

DELTA -> # ID of Lighter. Must be a unique STRING type.
LCU2000 # Type of Lighter. Must be of LighterNameType.
LCU # Spot Type Required. Must be SpotType.
12.0 # Max Speed. Must be REAL.
10.0 # Full Load Speed. Must be REAL.
10 # Max Load in # of vehicles. Must be INTEGER.
92000.0 # Fuel Capacity in gallons. Must be REAL.
41.6 # Burn Rate in Gallons per hour. Must be REAL.
0.25 # Min Fuel expressed in percent. Must be REAL.

ECHO -> # ID of Lighter. Must be a unique STRING type.
LCU2000 # Type of Lighter. Must be of LighterNameType.
LCU # Spot Type Required. Must be SpotType.
12.0 # Max Speed. Must be REAL.
10.0 # Full Load Speed. Must be REAL.
10 # Max Load in # of vehicles. Must be INTEGER.
92000.0 # Fuel Capacity in gallons. Must be REAL.

230



41.6 # Burn Rate in Gallons per hour. Must be REAL.
0.25 # Min Fuel expressed in percent. Must be REAL.

FOXTROT -> # ID of Lighter. Must be a unique STRING type.
LCU1610 # Type of Lighter. Must be of LighterNameType.
LCU # Spot Type Required. Must be SpotType.
12.0 # Max Speed. Must be REAL.
10.0 # Full Load Speed. Must be REAL.
4 # Max Load in # of vehicles. Must be INTEGER.
3290.0 # Fuel Capacity in gallons. Must be REAL.
36.0 # Burn Rate in Gallons per hour. Must be REAL.
0.25 # Min Fuel expressed in percent. Must be REAL.

GOLF -> # ID of Lighter. Must be a unique STRING type.
LCU1610 # Type of Lighter. Must be of LighterNameType.
LCU # Spot Type Required. Must be SpotType.
12.0 # Max Speed. Must be REAL.
10.0 # Full Load Speed. Must be REAL.
3 # Max Load in # of vehicles. Must be INTEGER.
3290.0 # Fuel Capacity in gallons. Must be REAL.
36.0 # Burn Rate in Gallons per hour. Must be REAL.
0.25 # Min Fuel expressed in percent. Must be REAL.

HOTEL -> # ID of Lighter. Must be a unique STRING type.
LSV # Type of Lighter. Must be of LighterNameType.
LCU # Spot Type Required. Must be SpotType.
10.6 # Max Speed. Must be REAL.

10.0 # Full Load Speed. Must be REAL.
25 # Max Load in # of vehicles. Must be INTEGER.
165000.0 # Fuel Capacity in gallons. Must be REAL.
145.8 # Burn Rate in Gallons per hour. Must be REAL.
0.25 # Min Fuel expressed in percent. Must be REAL.

INDIA -> # ID of Lighter. Must be a unique STRING type.
CWF31 # Type of Lighter. Must be of LighterNameType.

231



CWF # Spot Type Required. Must be SpotType.
6.0 # Max Speed. Must be REAL.
3.0 # Full Load Speed. Must be REAL.
15 # Max Load in # of vehicles. Must be INTEGER.
1000.0 # Fuel Capacity in gallons. Must be REAL.
20.8 # Burn Rate in Gallons per hour. Must be REAL.
0.25 # Min Fuel expressed in percent. Must be REAL.

JULIET -> # ID of Lighter. Must be a unique STRING type.
CWF31 # Type of Lighter. Must be of LighterNameType.
CWF # Spot Type Required. Must be SpotType.
6.0 # Max Speed. Must be REAL.
3.0 # Full Load Speed. Must be REAL.
15 # Max Load in # of vehicles. Must be INTEGER.
1000.0 # Fuel Capacity in gallons. Must be REAL.
20.8 # Burn Rate in Gallons per hour. Must be REAL.
0.25 # Min Fuel expressed in percent. Must be REAL.

KILO -> # ID of Lighter. Must be a unique STRING type.
CWF31 # Type of Lighter. Must be of LighterNameType.
CWF # Spot Type Required. Must be SpotType.
6.0 # Max Speed. Must be REAL.
3.0 # Full Load Speed. Must be REAL.
15 # Max Load in # of vehicles. Must be INTEGER.
1000.0 # Fuel Capacity in gallons. Must be REAL.
20.8 # Burn Rate in Gallons per hour. Must be REAL.
0.25 # Min Fuel expressed in percent. Must be REAL.

LIMA -, # ID of Lighter. Must be a unique STRING type.
CWF31 # Type of Lighter. Must be of LighterNameType.
CWF # Spot Type Required. Must be SpotType.
6.0 # Max Speed. Must be REAL.
3.0 # Full Load Speed. Must be REAL.
15 # Max Load in # of vehicles. Must be INTEGER.
1000.0 # Fuel Capacity in gallons. Must be REAL.
20.8 # Burn Rate in Gallons per hour. Must be REAL.
0.25 # Min Fuel expressed in percent. Must be REAL.

232



Notes: a. LighterNameType = (LCU1466, LCUl610. LCU2000,
CWFll, CWF21, CWF31, LSV).

These are the only options for LighterNameType.

b. SpotType = (LCU, CWF, LoLo). This refers to the
type of spot required for mooring by a lighter.
An LSV uses an LCU spot for mooring to the RRDF,
so this would be indicated in this field.

------------------------- RFAName.dat-----------------------

1 # Number of Refuel Areas in this file/simulation scenario

FuelDepot -> dummy \\ # Name of Refuel Area. Must be of
STRING type.

------------------------ RFAType.dat-----------------------

1 # Number of Refuel Area records in this file.

FuelDepot -> # Name of Refuel Area. Must be of
STRING type.
2 # Number of spots. Must be INTEGER.
6.0 # Distance from Ship. Must be REAL.

# For each spot there must be a data
set. For 2 spots, we need two
BOOLEAN expressions in the following
two fields. If there were three
spots, There would be three

"SpotFree" fields in this record.

T # Spot Free. Must be BOOLEAN.

T # Spot Free. Must be BOOLEAN.

233



3500.0 # Fuel pump rate in gallons per hour.
Must be REAL.

-------------------------- ShpName.dat-----------------------

1 # Number of Ships in this file/simulation scenario

Belatrix -> dummy \\ # Name of Ship. Must be of STRING
type.

-------------------------- ShpType.dat-----------------------

1 # Number of Ship records in this file.

Belatrix -> # Name of Ship. Must be of STRING
type.
SSR # Ship Type. Must be ShipTypeType ( SSR, NSSR ).
6.0 # Distance from BLCP. Must be REAL.
3 # Number of spots. Must be INTEGER.

LCU # Spot Type. Must be SpotType.
T # Spot Free. Must be BOOLEAN.

CWF # Spot Type. Must be SpotType.
T # Spot Free. Must be BOOLEAN.

LoLo # Spot Type. Must be SpotType.
T # Spot Free. Must be BOOLEAN.

60 # Number of LoLo vehicles. Must be INTEGER.
0 # Number of RRDF Vehicles. Must be INTEGER.
834 # Number of Any Spot vehicles. Must be INTEGER.

234



Ship type is eirher self-sustaining (SSR), or non-self
sustaining (NSSR). These are the only two options.

For each spot in the record, two fields must appear:

1. SpotType, must be of type SpotType which is either
LCU, CWF, or LoLo. These are the only options for
this field.

2. SpotFree, indicates the status of the spot. normally
the spot would be empty at the start of a simulation
run, thus, indicated by a "T" for TRUE.

The number of vehicles on the ship can be partitioned
into three sets. For example, in the set above there are a
total of 894 vehicles onboard. Of those, 60 must be
offloaded from the LoLo spot, zero are may be removed frum
the RRDF only, and 834 can be removed from any spot, or the
first spot available.

235



APPDIZ N SAX8 LZ OUTPUT FILES

This appendix contains a complete set of output files.

The sample files below are the results of ten replications

of the validation scenario. The files themselves are self

explanitory, all times are in minutes.

--------------------------Total.out-------------------------

- -------------Throughput Stats----------------
Rep# Total Time
1 5795.406696
2 4516.278981
3 5049.667063
4 4212.945852
5 4342.143585
6 4598.425586
7 4306.958894
8 5356.148307
9 4627.004724
10 4096.678710
Total number of reps completed 10
Mean Throughput Time = 4690.165840

---------------------------BSpot.out------------------------

---------------Idle Beach Spot Time Stats----------------
Rep# Beach Make Beach ID Mean Idle Time
1 BareBeach NorthBeach 1851.511594
1 FloatingCWPier Admin 2696.831036
1 FloatingCWPier Army 3044.404815

236



1 FloatingCWPier Navy 2706.889934
2 BareBeach NorthBeach 2126.357278
2 FloatingCWPier Admin 2633.401745
2 FloatingCWPier Army 2666.989835
2 FloatingCwPier Navy 0.000000
3 BareBeach NorthBeach 2214.400175
3 FloatingCWPier Admin 2615.639354
3 FloatingCWPier Army 2678.884777
3 FloatingCWPier Navy 0.000000
4 BareBeach NorthBeach 2030.798808
4 FloatingCWPier Admin 2660.519865
4 FloatingCWPier Army 2757.632933
4 FloatingCWPier Navy 0.000000
5 BareBeach NorthBeach 2056.886539
5 FloatingCWPier Admin 2778.227232
5 FloatingCWPier Army 3207.377480
5 FloatingCWPier Navy 0.000000
6 BareBeach NorthBeach 2289.250141
6 FloatingCWPier Admin 2956.250880
6 FloatingCwPier Army 2864.941143
6 FloatingCWPier Navy 0.000000
7 BareBeach NorthBeach 2098.334342
7 FloatingCWPier Admin 2689.334808
7 FloatingCWPier Army 3177.835989
7 FloatingCWPier Navy 0.000000
8 BareBeach NorthBeach 2368.197230
8 FloatingCWPier Admin 3099.115844
8 FloatingCWPier Army 3013.179778
8 FloatingCWPier Navy 0.000000
9 BareBeach NorthBeach 2420.594112
9 FloatingCWPier Admin 2873.591649
9 FloatingCwPier Army 3006.716735
9 FloatingCWPier Navy 0.000000
10 BareBeach NorthBeach 2186.314462
1.0 FloatingCWPier Admin 2618.761722
10 FloatingCWPier Army 3208.601058
10 FloatingCWPier Navy 0.000000

Total number of reps completed = i0

237



Grand Mean For Beach Spot Idle Time = 2164.264468 For Beach
ID = NorthBeach
Grand Mean For Beach Spot Idle Time = 2762.167413 For Beach
ID = Admin
Grand Mean For Beach Spot Idle Time = 2962.656454 For Beach
ID = Army
Grand Mean For Beach Spot Idle Time = 270.688993 For Beach
ID = Navy

---------------------------SSpot.out------------------------

-------------- Idle Ship Spot Time Stats----------------
Rep# Ship Name Mean LCU Mean CWF Mean LoLo
1 Belatrix 1983.547568 2274.516363 1541.758145
2 Belatrix 1512.667104 1215.405897 1984.996518
3 Belatrix 2438.643103 2187.915981 1553.953693
4 Belatrix 2349.907577 1956.123552 1665.716019
5 Belatrix 1469.847130 1351.808132 2062.091047
6 Belatrix 1950.243928 1334.895501 2027.822743
7 Belatrix 820.284977 1445.356970 1481.796293
8 Belatrix 1468.487069 2564.665516 1515.234788
9 Belatrix 2014.772655 1953.579125 1429.237818
10 Belatrix 1474.539864 1584.341778 1938.257845

Total number of reps completed = 10
Grand Mean For LCU Ship Spot Idle Time = 1748.294097
Grand Mean For CWF Ship Spot Idle Time = 1786.860881
Grand Mean For LoLo Ship Spot Idle Time = 1720.086491

238



- Queue.out

--------------Time in Queue Stats----------------

Rep# Mean LCU Mean LSV Mean CWF
Ship Ship Ship

1 457.868142 630.036495 582.470282
2 716.492200 535.805339 433.802158
3 757.966480 393.900755 466.858381
4 809.126943 285.984057 503.752261
5 902.481843 587.302477 398.722487

6 1099.275997 518.580067 680.860167
7 828.091272 552.074930 456.557370
8 1197.924213 529.680445 465.659741
9 995.634134 716.634971 547.029459
10 983.139182 434.378531 391.346992

Rep# Mean LCU Mean LSV Mean CWF
Beach Beach Beach

1 0.000000 0.000000 0.000000
2 0.000000 0.000000 0.000000
3 0.000000 0.000000 0.000000
4 0.000000 0.000000 0.000000
5 0.000000 0.000000 0.000000
6 0.000000 0.000000 0.000000
7 0.000000 0.000000 0.000000
8 0.000000 0.000000 0.000000
9 0.000000 0.000000 0.000000
10 0.000000 0.000000 0.000000

Total number of reps completed = 10
Grand Mean For LCU in Beach Queue = 0.000000
Grand Mean For LSV in Beach Queue = 0.000000
Grand Mean For CWF in Beach Queue = 0.000000
Grand Mean For LCU in Ship Queue = 874.800041
Grand Mean For LSV in Ship Queue = 518.437807
Grand Mean For CWF in Ship Queue = 492.705930

239



INITIAL DISTRIBUTION LIST

1. Defense Logistics Studies Information Exchange 2
U.S. Army Logistics Management Center
Fort Lee, VA 23801

2. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

3. Deputy Chief of Naval Operations (Logistics) 1
N-402D
Washington, DC 20350

4. ATTN: Captain Steve Christy 1
DOD Joint Test Directorate
JLOTS III
Bunker 101
Fort Story, VA 23459

5. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

6. Professor William G. Kemple, Code OR/KE 1
Naval Postgraduate School
Monterey, CA 93943-5002

7. Professor Keebom Kang, Code AS/KK 1
Naval Postgraduate School
Monterey, CA 93943-5002

8. Professor David Schrady, Code OR/SO 1
Naval Postgraduate School
Monterey, CA 93943-5002

240



9. LPEILD 1
J-4, The Joint Staff
Pentagon
Washington DC, 20318-4000

10. Mobility Division 1
J-4, The Joint Staff
Pentagon
Washington DC, 20318-4000

11. Lieutenant Jack S. Noel 2
Department Head School, Class 131
Newport, RI 02841

241


